Automatic Segmentation on Glioblastoma Brain Tumor Magnetic Resonance Imaging Using Modified U-Net

  • Hapsari Peni Agustin Tjahyaningtijas Institut Teknologi Sepuluh Nopember, Universitas Negeri Surabaya, Indonesia
  • Andi K Nugroho Department of Electrical Engineering, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Cucun Very Angkoso Department of Electrical Engineering, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • I Ketut Edy Purnama Department of Computer Engineering, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Mauridhi Hery Purnomo Department of Electrical Engineering, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
Keywords: Brain tumor segmentation, fully convolutional network, U-Net, drop-out, dice score

Abstract

Glioblastoma is listed as a malignant brain tumor. Due to its heterogeneous composition in one area of the tumor, the area of tumor is difficult to segment from healthy tissue. On the other side,  the segmentation of brain tumor MRI imaging is also erroneous and takes time because of the large MRI image data. An automated segmentation approach based on fully convolutional architecture was developed to overcome the problem. One of fully convolutional network that used is U-Net framework. U-Net architecture is evaluated base on the number of epochs and drop-out values to achieve the most suitable architecture for the automatic segmentation of glioblastoma brain tumors. Through experimental findings, the most fitting architectural model is mU-Net architecture with an epoch number of 90 and a drop out layer value of 0.5. The results of the segmentation performance are shown by a dice value of 0.909 which is greater than that of the previous research.

Downloads

Download data is not yet available.

References

L. M. DeAngelis, Medical progress: Brain tumors, N. Engl. J. Med., vol. 344, no. 2, pp. 114–123, 2001. DOI: https://doi.org/10.1056/NEJM200101113440207

T. Jiang, Y. Mao, W. Ma, Q. Mao, Y. You, X. Yang, C. Jiang, C. Kang, X. Li, L. Chen, X. Qiu, W. Wang, W. Li, Y. Yao, S. Li, S. Li, A. Wu, K. Sai, H. Bai, G. Li, B. Chen, K. Yao, X. Wei, X. Liu, Z. Zhang, Y. Dai, S. Lv, L. Wang, Z. Lin, J. Dong, G. Xu, X. Ma, J. Cai, W. Zhang, H. Wang, L. Chen, C. Zhang, P. Yang, W. Yan, Z. Liu, H. Hu, J. Chen, Y. Liu, Y. Yang, Z. Wang, Z. Wang, Y. Wang, G. You, L. Han, Z. Bao, Y. Liu, Y. Wang, X. Fan, S. Liu, X. Liu, Y. Wang, and Q. Wang, CGCG clinical practice guidelines for the management of adult diffuse gliomas, Cancer Lett., vol. 375, no. 2, pp. 263–273, Jun. 2016. DOI: https://doi.org/10.1016/j.canlet.2016.01.024

R. Stupp, M. Brada, M. J. van den Bent, J. C. Tonn, and G. Pentheroudakis, High-Grade Malignant Glioma ESMO Clinical Practice Guidelines, Ann. Oncol., vol. 25, no. April, pp. 93–101, 2014. DOI: https://doi.org/10.1093/annonc/mdu050

M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and H. Larochelle, Brain tumor segmentation with Deep Neural Networks, Med. Image Anal., vol. 35, pp. 18–31, Jan. 2017. DOI: https://doi.org/10.1016/j.media.2016.05.004

G. Mohan and M. M. Subashini, MRI based medical image analysis: Survey on brain tumor grade classification, Biomed. Signal Process. Control, vol. 39, pp. 139–161, Jan. 2018. DOI: https://doi.org/10.1016/j.bspc.2017.07.007

Jin Liu, Min Li, Jianxin Wang, Fangxiang Wu, Tianming Liu, and Yi Pan, A survey of MRI-based brain tumor segmentation methods, Tsinghua Sci. Technol., vol. 19, no. 6, pp. 578–595, Dec. 2014. DOI: https://doi.org/10.1109/TST.2014.6961028

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M. A. Weber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L. Collins, N. Cordier, J. J. Corso, A. Criminisi, T. Das, H. Delingette, Ç. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John, E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H. C. Shin, J. Shotton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M. Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van Leemput, The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, vol. 34, no. 10, pp. 1993–2024, Oct. 2015.

E. Shelhamer, J. Long, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, Apr. 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2572683

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, vol. 07–12–June, pp. 3431–3440. DOI: https://doi.org/10.1109/CVPR.2015.7298965

S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, A survey of MRI-based medical image analysis for brain tumor studies, Phys. Med. Biol., vol. 58, no. 13, pp. R97–R129, Jul. 2013. DOI: https://doi.org/10.1088/0031-9155/58/13/R97

L. P. Clarke, R. P. Velthuizen, M. Clark, J. Gaviria, L. Hall, D. Goldgof, R. Murtagh, S. Phuphanich, and S. Brem, MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation., Magn. Reson. Imaging, vol. 16, no. 3, pp. 271–9, Apr. 1998. DOI: https://doi.org/10.1016/S0730-725X(97)00302-0

M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, A brain tumor segmentation framework based on outlier detection, Med. Image Anal., vol. 8, no. 3, pp. 275–283, Sep. 2004. DOI: https://doi.org/10.1016/j.media.2004.06.007

R. Maksimovic, S. Stankovic, and D. Milovanovic, Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models — ‘snakes, Int. J. Med. Inform., vol. 58–59, pp. 29–37, Sep. 2000. DOI: https://doi.org/10.1016/S1386-5056(00)00073-3

N. Porz, S. Bauer, A. Pica, P. Schucht, J. Beck, R. K. Verma, J. Slotboom, M. Reyes, and R. Wiest, Multi-Modal Glioblastoma Segmentation: Man versus Machine, PLoS One, vol. 9, no. 5, p. e96873, May 2014. DOI: https://doi.org/10.1371/journal.pone.0096873

X. Bai and W. Wang, Saliency-SVM: An automatic approach for image segmentation, Neurocomputing, vol. 136, pp. 243–255, Jul. 2014. DOI: https://doi.org/10.1016/j.neucom.2014.01.008

D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp, J. Shotton, O. M. Thomas, T. Das, R. Jena, and S. J. Price, Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR, Springer, Berlin, Heidelberg, 2012, pp. 369–376. DOI: https://doi.org/10.1007/978-3-642-33454-2_46

R. Jain, L. M. Poisson, D. Gutman, L. Scarpace, S. N. Hwang, C. A. Holder, M. Wintermark, A. Rao, R. R. Colen, J. Kirby, J. Freymann, C. C. Jaffe, T. Mikkelsen, and A. Flanders, Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor., Radiology, vol. 272, no. 2, pp. 484–93, Aug. 2014. DOI: https://doi.org/10.1148/radiol.14131691

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017. DOI: https://doi.org/10.1145/3065386

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, vol. 07-12-June-2015, pp. 1–9. DOI: https://doi.org/10.1109/CVPR.2015.7298594

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016–December, pp. 770–778.

S. Saxena and J. Verbeek, Convolutional Neural Fabrics, Adv. Neural Inf. Process. Syst., pp. 4060–4068, Jun. 2016.

R. Rokhana, J. Priambodo, T. Karlita, I. M. G. Sunarya, E. M. Yuniarno, I. K. E. Purnama, and M. H. Purnomo, Convolutional Neural Network untuk Pendeteksian Patah Tulang Femur pada Citra Ultrasonik B–Mode, J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 1, p. 59, Mar. 2019. DOI: https://doi.org/10.22146/jnteti.v8i1.491

A. Risnumawan, M. I. Perdana, Alif Habib Hidayatulloh, A. Khoirul Rizal, Indra Adji Sulistijono, Achmad Basuki, and Rokhmat Febrianto, Automatic Detection of Wrecked Airplanes from UAV Images, Emit. Int. J. Eng. Technol., vol. 7, no. 2, pp. 570–585, Dec. 2019. DOI: https://doi.org/10.24003/emitter.v7i2.424

D. C. Cires¸ancires¸an, A. Giusti, L. M. Gambardella, and J. Urgen Schmidhuber, Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images.

C. Farabet, C. Couprie, L. Najman, and Y. Lecun, Learning hierarchical features for scene labeling, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915–1929, 2013.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9351, pp. 234–241. DOI: https://doi.org/10.1007/978-3-319-24574-4_28

S. G, S. Kp, and V. R, Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals, Procedia Comput. Sci., vol. 132, pp. 1253–1262, Jan. 2018.

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee, N4ITK: Improved N3 bias correction, IEEE Trans. Med. Imaging, vol. 29, no. 6, pp. 1310–1320, Jun. 2010.

L. G. Nyúl, J. K. Udupa, and X. Zhang, New variants of a method of MRI scale standardization, IEEE Trans. Med. Imaging, vol. 19, no. 2, pp. 143–150, 2000. DOI: https://doi.org/10.1109/42.836373

S. Pereira, A. Pinto, V. Alves, and C. A. Silva, Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images, IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1240–1251, May 2016.

K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A. V. Nori, A. Criminisi, D. Rueckert, and B. Glocker, DeepMedic for brain tumor segmentation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 10154 LNCS, pp. 138–149.

F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, No new-net, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11384 LNCS, pp. 234–244.

G. Wang, W. Li, S. Ourselin, and T. Vercauteren, Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation, Front. Comput. Neurosci., vol. 13, p. 56, Aug. 2019. DOI: https://doi.org/10.3389/fncom.2019.00056

Published
2020-06-02
How to Cite
Tjahyaningtijas, H. P. A., Nugroho, A. K., Angkoso, C. V., Purnama, I. K. E., & Purnomo, M. H. (2020). Automatic Segmentation on Glioblastoma Brain Tumor Magnetic Resonance Imaging Using Modified U-Net. EMITTER International Journal of Engineering Technology, 8(1), 161-177. https://doi.org/10.24003/emitter.v8i1.505
Section
Articles