Implementation of Portable Ultrasound for Heart Disease Detection Using Cloud Computing-Based Machine Learning

  • Riyanto Sigit Politeknik Elektronika Negeri Surabaya
  • Rika Rokhana Politeknik Elektronika Negeri Surabaya
  • Setiawardhana Politeknik Elektronika Negeri Surabaya
  • Taufiq Hidayat Universitas Airlangga
  • Anwar Kementerian Ketenagakerjaan
  • Jovan Josafat Jaenputra Politeknik Elektronika Negeri Surabaya, Indonesia
Keywords: Echocardiography, Ultrasound Portable, Cloud Computing, Image Processing

Abstract

Heart disease remains one of the leading causes of death globally, including in Indonesia. Cardiovascular disease is the leading cause of death worldwide, resulting in a significant number of fatalities. In Indonesia, access to specialized heart examination services is limited, requiring patients to visit large hospitals equipped with specialized facilities. Echocardiographic examinations using ultrasound can measure various heart parameters, such as hemodynamics, heart mass, and myocardial deformation. Portable ultrasound devices have emerged, enabling flexible and effective heart examinations. These devices capture video data of the patient's heart condition. The data undergoes image preprocessing involving median filtering, high-boost filtering, morphological operations, thresholding, and Canny filtering. Segmentation is performed using region filters, collinear filters, and triangle equations. Tracking utilizes the Optical Flow Lucas-Kanade method, and feature extraction employs Euclidean distance and trigonometric equations. The classification stage uses Support Vector Machine (SVM). Video data is transmitted via a mobile application to the cloud, where all stages from preprocessing to classification are conducted on cloud servers. The classification results are then sent back to the mobile application. The proposed model achieved an accuracy rate of 86% with a standard deviation of 0.09, indicating that the detection system performs effectively.

Downloads

Download data is not yet available.

Author Biography

Riyanto Sigit, Politeknik Elektronika Negeri Surabaya

References

M. Lindstrom et al., Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990-2021, J Am Coll Cardiol, vol. 80, no. 25, 2022, doi: 10.1016/j.jacc.2022.11.001.

S. Fitzsimons and R. N. Doughty, Role of transthoracic echocardiogram in acute heart failure, 2021. doi: 10.31083/J.RCM2203081.

A. Anwar, R. Sigit, A. Basuki, I. P. Adi, and S. Gunawan, Automatic Segmentation of Heart Cavity in Echocardiography Images : Two & Four-Chamber View Using Iterative Process Method, Proceedings - International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2019, pp. 177–182, 2019.

Y. D. Putra, R. Sigit, and H. Yuniarti, Portable Device-Based Medical Service System for DICOM to PNG Conversion, in International Electronics Symposium 2021: Wireless Technologies and Intelligent Systems for Better Human Lives, IES 2021 - Proceedings, 2021. doi: 10.1109/IES53407.2021.9593962.

A. Moradkhani, A. Broumandnia, and S. J. Mirabedini, A portable medical device for detecting diseases using Probabilistic Neural Network, Biomed Signal Process Control, vol. 71, 2022, doi: 10.1016/j.bspc.2021.103142.

Y. Hornych, J. C. Toledo, B. Wang, W. J. Yi, and J. Saniie, Near-Ultrasonic Communications for IoT Applications using Android Smartphone, in IEEE International Conference on Electro Information Technology, 2020. doi: 10.1109/EIT48999.2020.9208265.

A. S. Aziz, R. Sigit, A. Basuki, and T. Hidayat, Cardiac motions classification on sequential PSAX echocardiogram, Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 3, pp. 1289–1296, 2018, doi: 10.11591/ijeecs.v12.i3.pp1289-1296.

R. Sigit, A. Basuki, and Anwar, A new feature extraction method for classifying heart wall from left ventricle cavity, Int J Adv Sci Eng Inf Technol, 2020, doi: 10.18517/ijaseit.10.3.12152.

B. Berisha, E. Mëziu, and I. Shabani, Big data analytics in Cloud computing: an overview, Journal of Cloud Computing, vol. 11, no. 1, 2022, doi: 10.1186/s13677-022-00301-w.

T. Aniamarta, A. Salsabilla Huda, and F. Lizariani Aqsha, Causes and Treatments of Heart Attack, BIOLOGICA SAMUDRA, vol. 4, no. 1, 2022, doi: 10.33059/jbs.v4i1.3925.

J. Zhou, M. Du, S. Chang, and Z. Chen, Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis, 2021. doi: 10.1186/s12947-021-00261-2.

Y. Muhammad, M. Tahir, M. Hayat, and K. T. Chong, Early and accurate detection and diagnosis of heart disease using intelligent computational model, Sci Rep, vol. 10, no. 1, 2020, doi: 10.1038/s41598-020-76635-9.

D. Wang et al., Cloud based services for biomedical image analysis, in CLOSER 2013 - Proceedings of the 3rd International Conference on Cloud Computing and Services Science, 2013. doi: 10.5220/0004370003500357.

L. Liu et al., iMAGE cloud: medical image processing as a service for regional healthcare in a hybrid cloud environment, Environ Health Prev Med, vol. 21, no. 6, 2016, doi: 10.1007/s12199-016-0582-7.

F. Fahmi, T. H. Nasution, and Anggreiny, Smart cloud system with image processing server in diagnosing brain diseases dedicated for hospitals with limited resources, Technology and Health Care, vol. 25, no. 3, 2017, doi: 10.3233/THC-171298.

I. Putu Adi Surya Gunawan, R. Sigit, and A. I. Gunawan, Veins projection performance based on ultrasonic distance sensor in various surface objects, Indonesian Journal of Electrical Engineering and Computer Science, 2019, doi: 10.11591/ijeecs.v17.i3.pp1362-1370.

I. Putu Adi Surya Gunawan, R. Sigit, and A. I. Gunawan, Veins projection performance based on ultrasonic distance sensor in various surface objects, Indonesian Journal of Electrical Engineering and Computer Science, 2019, doi: 10.11591/ijeecs.v17.i3.pp1362-1370.

C. Nofindarwati, R. Sigit, and T. Harsono, Detection of Heart Condition based on Echocardiography Image using Ultrasound, IES 2019 - International Electronics Symposium: The Role of Techno-Intelligence in Creating an Open Energy System Towards Energy Democracy, Proceedings, pp. 522–526, 2019, doi: 10.1109/ELECSYM.2019.8901556.

K. R. Ummah, R. Sigit, H. Yuniarti, and A. Anwar, Tracking Multidimensional Echocardiographic Image using Optical Flow, in IES 2020 - International Electronics Symposium: The Role of Autonomous and Intelligent Systems for Human Life and Comfort, 2020, pp. 527–533. doi: 10.1109/IES50839.2020.9231920.

M. W. Asyhari, R. Sigit, B. S. B. Dewantara, and Anwar, Comparison of Optical Flow Methods: Study about Left Ventricular Tracking in Multi View Echocardiographic Images, in International Electronics Symposium 2021: Wireless Technologies and Intelligent Systems for Better Human Lives, IES 2021 - Proceedings, 2021, pp. 137–143. doi: 10.1109/IES53407.2021.9593990.

Introduction to Motion Estimation with Optical Flow. https://adacenter.org/sites/default/files/milspec/opticalflow-overview-nanonetsdotcom.pdf

D. N. Z. A. Jesemi, H. Ujir, I. Hipiny, and S. F. S. Juan, The analysis of facial feature deformation using optical flow algorithm, Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 2, pp. 769–777, 2019, doi: 10.11591/ijeecs.v15.i2.pp769-777.

R. Sigit, T. Karlita, T. Hidayat, and Anwar, Left Ventricular Movement Feature Extraction: A New Method for Classifying Heart Condition in Four-Chamber and Two-Chamber Views, International Journal of Intelligent Engineering and Systems, vol. 15, no. 4, pp. 292–302, 2022, doi: 10.22266/ijies2022.0831.27.

O. Natan, A. I. Gunawan, and B. S. B. Dewantara, Grid SVM: Aplikasi Machine Learning dalam Pengolahan Data Akuakultur, Jurnal Rekayasa Elektrika, 2019, doi: 10.17529/jre.v15i1.13298.

K. Shreedarshan and S. Sethu Selvi, Crowd recognition system based on optical flow along with SVM classifier, International Journal of Electrical and Computer Engineering, vol. 9, no. 4, pp. 2451–2459, 2019, doi: 10.11591/ijece.v9i4.pp2451-2459.

Published
2025-01-20
How to Cite
Sigit, R., Rika Rokhana, Setiawardhana, Taufiq Hidayat, Anwar, & Jovan Josafat Jaenputra. (2025). Implementation of Portable Ultrasound for Heart Disease Detection Using Cloud Computing-Based Machine Learning. EMITTER International Journal of Engineering Technology, 12(2), 196-212. https://doi.org/10.24003/emitter.v12i2.904
Section
Articles