Evaluating YOLOv5s and YOLOv8s for Kitchen Fire Detection: A Comparative Analysis

  • Norisza Dalila Ismail Universiti Kebangsaan Malaysia, Malaysia
  • Rizauddin Ramli Universiti Kebangsaan Malaysia, Malaysia
  • Mohd Nizam Ab Rahman Universiti Kebangsaan Malaysia, Malaysia
Keywords: Convolutional neural network, Deep learning, Kitchen fire detection, Performance metrics, YOLO

Abstract

Accurate and timely detection of kitchen fires is crucial for enhancing safety and reducing potential damage. This paper discusses comparative analysis of two cutting-edge object detection models, YOLOv5s and YOLOv8s, focusing on each performance in the critical application of kitchen fire detection. The performance of these models is evaluated using five main key metrics including precision, F1 score, recall, mean Average Precision across various thresholds (mAP50-95) and mean Average Precision at 50 percent threshold (mAP50). Results indicate that YOLOv8s significantly outperforms YOLOv5s in several metrics. YOLOv8s achieves a recall of 0.814 and an mAP50 of 0.897, compared to YOLOv5s' recall of 0.704 and mAP50 of 0.783. Additionally, YOLOv8s attains an F1 score of 0.861 and an mAP50-95 of 0.465, whereas YOLOv5s records an F1 score of 0.826 and mAP50-95 of 0.342. However, YOLOv5s shows a higher precision of 0.952 compared to YOLOv8s' 0.914. This detailed evaluation underscores YOLOv8s as a more effective model for precise fire detection in kitchen settings, highlighting its potential for enhancing real-time fire safety systems. Additionally, by offering the future work of integration of sensors with latest YOLO involvement can further optimize efficiency and fast detection rate.

Downloads

Download data is not yet available.

References

S. Hall, and T. Mcgree, Home cooking fires: supporting tables September 2023 (NFPA ®)

M. Ahrens, Home fires involving cooking equipment. National Fire Protection Association Fire Analysis and Research Division, 2009

A. Dinesh, T. Polanco, and R. Engdahl, Burns from ignited household aerosols in the kitchen: a case series. Scars Burn Heal, 3, 205951311772820, 2017 DOI: https://doi.org/10.1177/2059513117728202

M. Spearpoint, C. Hopkin, and D. Hopkin, Modelling the thermal radiation from kitchen hob fires. Journal Fire Science, 38 (4), 377–394, 2020 DOI: https://doi.org/10.1177/0734904120923566

M.B. Hamida, and M.A. Hassanain, Fire safety in the built-environment: a case study in a residential facility, Architecture, Civil Engineering, Environment, 12 (2), 2019 DOI: https://doi.org/10.21307/acee-2019-020

H.B. Choi, E.H. Hwang, and D.M. Choi, Indoor air quality sensor utilization for unwanted fire alarm improvement in studio-type apartments. Fire, 6 (7), 2023 DOI: https://doi.org/10.3390/fire6070255

J. Milke, and R. Zevotek, Analysis of the response of smoke detectors to smoldering fires and nuisance sources. Fire Technology, 52 (5), 1235–1253, 2016 DOI: https://doi.org/10.1007/s10694-015-0465-2

J. Johnston, K. Zeng, and N. Wu, An evaluation and embedded hardware implementation of yolo for real-time wildfire detection. 2022 IEEE World AI IoT Congress, AIIoT 2022, 138–144, 2022 DOI: https://doi.org/10.1109/AIIoT54504.2022.9817206

L. An, L. Chen, and X. Hao, Indoor fire detection algorithm based on second-order exponential smoothing and information fusion. Information, 14 (5), 258. 2023 DOI: https://doi.org/10.3390/info14050258

E. Casas, L. Ramos, E. Bendek, and F. Rivas-Echeverria, YOLOv5 vs. YOLOv8: Performance benchmarking in wildfire and smoke detection scenarios. Journal of Image and Graphics, 12 (2), 127–136, 2024 DOI: https://doi.org/10.18178/joig.12.2.127-136

A. Rehman, D. Kim, and A. Paul, Convolutional neural network model for fire detection in real-time environment. Computers, Materials & Continua, 77 (2), 2289–2307, 2023 DOI: https://doi.org/10.32604/cmc.2023.036435

Y. Li, J. Shang, M. Yan, B. Ding, and J. Zhong, Real-time early indoor fire detection and localization on embedded platforms with fully convolutional one-stage object detection. Sustainability, 15 (3), 1794, 2023 DOI: https://doi.org/10.3390/su15031794

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788, 2016 DOI: https://doi.org/10.1109/CVPR.2016.91

J. Redmon, and A. Farhadi, YOLO9000: Better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525, 2017 DOI: https://doi.org/10.1109/CVPR.2017.690

J. Redmon, and A. Farhadi, YOLOv3: An incremental improvement, 2018

A. Bochkovskiy, C.-Y. Wang, and H.-Y.M. Liao, YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020

G. Jocher, YOLOv5 by Ultralytics, 2020

C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W.; Li, Y. Nie, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, and X. Wei, YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976, 2022

C.-Y. Wang, A. Bochkovskiy, and H.-Y.M. Liao, YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475), 2022 DOI: https://doi.org/10.1109/CVPR52729.2023.00721

C.-Y. Wang, I.-H. Yeh, and H.-Y.M. Liao, YOLOv9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024 DOI: https://doi.org/10.1007/978-3-031-72751-1_1

L. Zhao, L. Zhi, C. Zhao, W. Zheng, Fire-YOLO: A Small Target Object Detection Method for Fire Inspection. Sustainability, 14, 4930, 2022 DOI: https://doi.org/10.3390/su14094930

H. Wu, Y. Hu, X. Mei, and J. Xian, Ship fire detection based on an improved yolo algorithm with a lightweight convolutional neural network model. Sensors, 22(19):7420. 2022 DOI: https://doi.org/10.3390/s22197420

S. Wang, and X. Wang, ES-YOLO: A new lightweight fire detection model. Third International Conference on Computer Vision and Data Mining (ICCVDM 2022), 125111F, 2023 DOI: https://doi.org/10.1117/12.2660040

X. Wan, J. Cai, S. Luo, Z. Tian, L. Zhang and X. Xia, Gaussian Process for the Machine Learning-based Smart fire Detection System. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 100-104, 2022 DOI: https://doi.org/10.1109/ITOEC53115.2022.9734697

M. A. Rahman, S. T. Hasan and M. A. Kader, Computer Vision Based Industrial and Forest Fire Detection Using Support Vector Machine (SVM). International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 233-238, 2022 DOI: https://doi.org/10.1109/ICISET54810.2022.9775775

J. Zhang, J. Zhang, K. Zhou, Y. Zhang, H. Chen, and X. Yan, An improved yolov5-based underwater object-detection framework. Sensors, 23 (7), 3693, 2023 DOI: https://doi.org/10.3390/s23073693

M.L. Mekhalfi, C. Nicolo, Y. Bazi, M.M. Al. Rahhal, N.A. Alsharif, and E. Al. Maghayreh, Contrasting Yolov5, transformer, and efficientdet detectors for crop circle detection in desert. IEEE Geoscience and Remote Sensing Letters, 19, 2022 DOI: https://doi.org/10.1109/LGRS.2021.3085139

Z. Liu, X. Gao, Y. Wan, J. Wang, and H. Lyu, An improved Yolov5 method for small object detection in UAV capture scenes. IEEE Access, 11, 14365–14374, 2023 DOI: https://doi.org/10.1109/ACCESS.2023.3241005

W. Liu, K. Quijano, and M.M. Crawford, YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved yolov5 based on transfer learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 8085–8094, 2022 DOI: https://doi.org/10.1109/JSTARS.2022.3206399

S. Wu, Z. Li, S. Li, Q. Liu, and W. Wu, Static gesture recognition algorithm based on improved yolov5s. Electronics (Basel), 12 (3), 596, 2023 DOI: https://doi.org/10.3390/electronics12030596

G. Jocher, A. Chaurasia, and J. Qiu, YOLO by Ultralytics, 2023

J.H. Kim, N. Kim, and C.S. Won, High-speed drone detection based on yolo-v8. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2023-June, 2023 DOI: https://doi.org/10.1109/ICASSP49357.2023.10095516

A. Vats, and D.C. Anastasiu, Enhancing retail checkout through video inpainting, Yolov8 detection, and deepsort tracking. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 5530–5537, 2023 DOI: https://doi.org/10.1109/CVPRW59228.2023.00585

M. Hussain, H. Al-Aqrabi, M. Munawar, R. Hill, and T. Alsboui, (). Domain feature mapping with yolov7 for automated edge-based pallet racking inspections. Sensors, 22 (18), 6927, 2022 DOI: https://doi.org/10.3390/s22186927

G. Zeng, On the confusion matrix in credit scoring and its analytical properties. Communications in Statistics- Theory and Methods, 49 (9), 2080–2093, 2020 DOI: https://doi.org/10.1080/03610926.2019.1568485

Y. Zhang, T. Zuo, L. Fang, J. Li, and Z. Xing, An improved MAHAKIL oversampling method for imbalanced dataset classification. IEEE Access, 9, 16030–16040, 2021 DOI: https://doi.org/10.1109/ACCESS.2020.3047741

E. Casas, L. Ramos, E. Bendek, and F. Rivas-Echeverria, Assessing the effectiveness of yolo architectures for smoke and wildfire detection. IEEE Access, 11, 96554–96583, 2023 DOI: https://doi.org/10.1109/ACCESS.2023.3312217

M. Vergara, L. Ramos, N.D. Rivera-Campoverde, and F. Rivas-Echeverria, EngineFaultDB: A novel dataset for automotive engine fault classification and baseline results. IEEE Access, 11, 126155–126171, 2023 DOI: https://doi.org/10.1109/ACCESS.2023.3331316

R. Padilla, S.L. Netto, and E.A.B. da Silva, A survey on performance metrics for object-detection algorithms. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 237–242, 2020 DOI: https://doi.org/10.1109/IWSSIP48289.2020.9145130

R. Padilla, W.L. Passos, T.L.B. Dias, S.L. Netto, and E.A.B. da Silva, A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics (Basel), 10 (3), 279, 2021 DOI: https://doi.org/10.3390/electronics10030279

Z. Ning, X. Wu, J. Yang, and Y. Yang, MT-YOLOv5: Mobile terminal table detection model based on YOLOv5. Journal of Physics: Conference Series, 1978 (1), 012010, 2021 DOI: https://doi.org/10.1088/1742-6596/1978/1/012010

H. Zhu, H. Wei, B. Li, X. Yuan, and N. Kehtarnavaz, A review of video object detection: datasets, metrics and methods. Applied Sciences, 10 (21), 7834, 2020 DOI: https://doi.org/10.3390/app10217834

Published
2024-12-27
How to Cite
Ismail, N. D., Ramli, R., & Ab Rahman, M. N. (2024). Evaluating YOLOv5s and YOLOv8s for Kitchen Fire Detection: A Comparative Analysis. EMITTER International Journal of Engineering Technology, 12(2), 167-181. https://doi.org/10.24003/emitter.v12i2.882
Section
Articles