Modified Deep Pattern Classifier on Indonesian Traditional Dance Spatio-Temporal Data

  • Edy Mulyanto Institut Teknologi Sepuluh Nopember, Indonesia
  • Eko Mulyanto Yuniarno Institut Teknologi Sepuluh Nopember, Indonesia
  • Isa Hafidz Institut Teknologi Telkom Surabaya, Indonesia
  • Nova Eka Budiyanta Institut Teknologi Sepuluh Nopember, Indonesia
  • Ardyono Priyadi Institut Teknologi Sepuluh Nopember, Indonesia
  • Mauridhi Hery Purnomo Institut Teknologi Sepuluh Nopember, Indonesia
Keywords: Convolutional neural network, Indonesian traditional dance, Modified deep pattern classifier, Spatio-temporal data

Abstract

Traditional dances, like those of Indonesia, have complex and unique patterns requiring accurate cultural preservation and documentation classification. However, traditional dance classification methods often rely on manual analysis and subjective judgment, which leads to inconsistencies and limitations. This research explores a modified deep pattern classifier of traditional dance movements in videos, including Gambyong, Remo, and Topeng, using a Convolutional Neural Network (CNN). Evaluation model's performance using a testing spatio-temporal dataset in Indonesian traditional dance videos is performed. The videos are processed through frame-level segmentation, enabling the CNN to capture nuances in posture, footwork, and facial expressions exhibited by dancers. Then, the obtained confusion matrix enables the calculation of performance metrics such as accuracy, precision, sensitivity, and F1-score. The results showcase a high accuracy of 97.5%, indicating the reliable classification of the dataset. Furthermore, future research directions are suggested, including investigating advanced CNN architectures, incorporating temporal information through recurrent neural networks, exploring transfer learning techniques, and integrating user feedback for iterative refinement of the model. The proposed method has the potential to advance dance analysis and find applications in dance education, choreography, and cultural preservation.

Downloads

Download data is not yet available.

References

Emmanuel C. Maraña, Ramiella Anne A. Arpon, Irvin Lance L. Capuchino, Romiele Anne F. Casiño, Kate Rossleth T. Casuga, Jenifer G. Aguilar. Strengthening of best practices in the preservation of cultural diversities: A phenomenological research. GSC Adv Res Rev 2023; Vol. 15, pp.46–62, 2023 DOI: https://doi.org/10.30574/gscarr.2023.15.3.0166

Shoji M, Takafuji Y, Harada T. Behavioral impact of disaster education: Evidence from a dance-based program in Indonesia. Int J Disaster Risk Reduct, Vol. 45, 2020 DOI: https://doi.org/10.1016/j.ijdrr.2020.101489

Tresnawaty B, Risdayah E. Religion and Media: Anthropological study of religious behavior in the film “Little House on the Prairie”. ETNOSIA J Etnografi Indones, Vol. 8, pp.116–125, 2023 DOI: https://doi.org/10.31947/etnosia.v8i1.22189

Cruz AGB, Seo Y, Scaraboto D. Between Cultural Appreciation and Cultural Appropriation: Self-Authorizing the Consumption of Cultural Difference. J Consum Res, 2023 DOI: https://doi.org/10.1093/jcr/ucad022

Domingues AR, Mazhar MU, Bull R. Environmental performance measurement in arts and cultural organisations: Exploring factors influencing organisational changes. J Environ Manage, Vol 326, 2023 DOI: https://doi.org/10.1016/j.jenvman.2022.116731

Natar M, Age MYC. CACI: The Contradiction Between the Nature and Practice of Modern Manggarai Society with Its Relevance to the Character Formation of the Millennial Generation. Int J Soc Serv Res, Vol. 3, pp. 1166–1172, 2023 DOI: https://doi.org/10.46799/ijssr.v3i5.377

Handayani R, Narimo S, Fuadi D, Minsih M, Widyasari C. Preserving Local Cultural Values in Forming the Character of Patriotism in Elementary School Students in Wonogiri Regency. J Innov Educ Cult Res Vol. 4, pp. 56–64, 2023 DOI: https://doi.org/10.46843/jiecr.v4i1.450

Jain N, Bansal V, Virmani D, Gupta V, Salas-Morera L, Garcia-Hernandez L. An Enhanced Deep Convolutional Neural Network for Classifying Indian Classical Dance Forms. Appl Sci Vol.11, pp. 6253, 2021 DOI: https://doi.org/10.3390/app11146253

Mu J. Pose Estimation-Assisted Dance Tracking System Based on Convolutional Neural Network. Comput Intell Neurosci, pp.1–10. 2022 DOI: https://doi.org/10.1155/2022/2301395

Victoria AH, Maragatham G. Automatic tuning of hyperparameters using Bayesian optimization. Evol Syst 2021, Vol.12, pp.217–223, 2021 DOI: https://doi.org/10.1007/s12530-020-09345-2

Challapalli JR, Devarakonda N. A novel approach for optimization of convolution neural network with hybrid particle swarm and grey wolf algorithm for classification of Indian classical dances. Knowl Inf Syst 2022, Vol.64, pp. 2411–2434, 2022 DOI: https://doi.org/10.1007/s10115-022-01707-3

Odefunso AE, Bravo EG, Chen YV. Traditional African Dances Preservation Using Deep Learning Techniques. Proc ACM Comput Graph Interact Tech 2022, Vpl.5, pp.1–11, 2022 DOI: https://doi.org/10.1145/3533608

Liu M, Jervis M, Li W, Nivlet P. Seismic facies classification using supervised convolutional neural networks and semisupervised generative adversarial networks. GEOPHYSICS, Vol.85, p. 47–58, 2020 DOI: https://doi.org/10.1190/geo2019-0627.1

Ranjbarzadeh R, Dorosti S, Jafarzadeh Ghoushchi S, Safavi S, Razmjooy N, Tataei Sarshar N, et al. Nerve optic segmentation in CT images using a deep learning model and a texture descriptor. Complex Intell Syst, Vol.8, pp. 43–57, 2022 DOI: https://doi.org/10.1007/s40747-022-00694-w

Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. F. Li, Large-scale video classification with convolutional neural networks, Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725-1732, 2014 DOI: https://doi.org/10.1109/CVPR.2014.223

J. Y. H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici, Beyond short snippets: Deep networks for video classification, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 07, pp. 4694-4702, 2015

A. Yenter and A. Verma, Deep CNN-LSTM with combined kernels from multiple branches for IMDb review sentiment analysis in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017, pp. 540-546, 2017 DOI: https://doi.org/10.1109/UEMCON.2017.8249013

E. Ergün, F. Gürkan, O. Kaplan and B. Günsel, Video action classification by deep learning, 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, pp. 1-4, 2017 DOI: https://doi.org/10.1109/SIU.2017.7960446

M. Abdullah, M. Ahmad and D. Han, Facial Expression Recognition in Videos: An CNN-LSTM based Model for Video Classification, 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, pp. 1-3, 2020 DOI: https://doi.org/10.1109/ICEIC49074.2020.9051332

M. A. Russo, A. Filonenko and K. -H. Jo, Sports Classification in Sequential Frames Using CNN and RNN, 2018 International Conference on Information and Communication Technology Robotics (ICT-ROBOT), Busan, Korea (South), pp. 1-3, 2018 DOI: https://doi.org/10.1109/ICT-ROBOT.2018.8549884

Savran Kızıltepe, R., Gan, J.Q. & Escobar, J.J. A novel keyframe extraction method for video classification using deep neural networks. Neural Comput & Applic, 2021 DOI: https://doi.org/10.1007/s00521-021-06322-x

S. Kulhare, S. Sah, S. Pillai and R. Ptucha, Key frame extraction for salient activity recognition, 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, pp. 835-840, 2016 DOI: https://doi.org/10.1109/ICPR.2016.7899739

S. Jadon and M. Jasim, Unsupervised video summarization framework using keyframe extraction and video skimming, 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 140-145, 2020 DOI: https://doi.org/10.1109/ICCCA49541.2020.9250764

H. Wang, F. Nie, H. Huang, and Y. Yang, Learning frame relevance for video classification, Proceedings of the 19th ACM international conference on Multimedia, pp. 1345–1348, 2011. DOI: https://doi.org/10.1145/2072298.2072011

Hegarini, E., Dharmayanti, Syakur, A.. Indonesian traditional dance motion capture documentation. 2016 2nd International Conference on Science and Technology-Computer (ICST), pp.108-111. 2016. DOI: https://doi.org/10.1109/ICSTC.2016.7877357

Jaya, I.K.H.T, Kesiman, M.W.A, Sunarya, I.M.G., Detecting the Same Pattern in Choreography Balinese Dance Using Convolutional Neural Network and Analysis Suffix Tree, Scientific Journal of Electrical Engineering Computers and Informatics, Vol 8, No 3, 2022. DOI: https://doi.org/10.26555/jiteki.v8i3.24461

Ibrahim; Abdul, Rachmat, Pakarena dance image classification using convolutional neural network algorithm, ILKOM Scientific Journal, Vol. 13, No. 2, pp. 134-139, 2021 DOI: https://doi.org/10.33096/ilkom.v13i2.816.134-139

Kishore, P.V.V., Kumar, K V K , Eepuri, Kiran & Sastry, A , Maddala, Teja , Anil Kumar, D. & Prasad, M.V.D.. (2018). Indian Classical Dance Action Identification and Classification with Convolutional Neural Networks. Advances in Multimedia, pp. 1-10, 2018. DOI: https://doi.org/10.1155/2018/5141402

Nazari, H., Kaynak, S, Classification of Turkish Folk Dances using Deep Learning. International Journal of Intelligent Systems and Applications in Engineering, pp. 226–232, 2022.

Shailesh, S, Judy, M.V., Understanding dance semantics using spatio-temporal features coupled GRU networks. Entertain Comput., pp. 484, 2022.

Tari Topeng Sekartaji Isi Surakarta, Indonesia Traditional Mask Dance - YouTube n.d. https://www.youtube.com/watch?v=TioUqzaqrj8 (accessed August 3, 2023).

Anglep Praba Candrasmurti_Tari Gambyong Pangkur - YouTube n.d. https://www.youtube.com/watch?v=NjobG1Ptd1o (accessed August 3, 2023)

Tari Remo Gagrak Anyar - YouTube n.d. https://www.youtube.com/watch?v=RbeyfjuA8ew (accessed August 3, 2023)

Ghosh A, Sufian A, Sultana F, Chakrabarti A, De D. Fundamental Concepts of Convolutional Neural Network. In: Balas VE, Kumar R, Srivastava R, editors. Recent Trends Adv. Artif. Intell. Internet Things, vol. 172, Cham: Springer International Publishing, pp. 519–67, 2020 DOI: https://doi.org/10.1007/978-3-030-32644-9_36

Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev, Vol. 53, pp. 455–516, 2020 DOI: https://doi.org/10.1007/s10462-020-09825-6

Michael Onyema E, Balasubaramanian S, Suguna S K, Iwendi C, Prasad BVVS, Edeh CD. Remote monitoring system using slow-fast deep convolution neural network model for identifying anti-social activities in surveillance applications. Meas Sens, Vol. 27, 2023 DOI: https://doi.org/10.1016/j.measen.2023.100718

Diwan T, Anirudh G, Tembhurne JV. Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimed Tools Appl 2023, Vol. 82, pp. 243–275, 2023 DOI: https://doi.org/10.1007/s11042-022-13644-y

Daviran M, Shamekhi M, Ghezelbash R, Maghsoudi A. Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm. Int J Environ Sci Technol, Vol.20, pp.259–276, 2023 DOI: https://doi.org/10.1007/s13762-022-04491-3

Ajayi OG, Ashi J. Effect of varying training epochs of a Faster Region-Based Convolutional Neural Network on the Accuracy of an Automatic Weed Classification Scheme. Smart Agric Technol, Vol.3, 2023 DOI: https://doi.org/10.1016/j.atech.2022.100128

Kim S-C, Cho Y-S. Predictive System Implementation to Improve the Accuracy of Urine Self-Diagnosis with Smartphones: Application of a Confusion Matrix-Based Learning Model through RGB Semiquantitative Analysis. Sensors, Vol. 22, 2022 DOI: https://doi.org/10.3390/s22145445

Kara OC, Venkatayogi N, Ikoma N, Alambeigi F. A Reliable and Sensitive Framework for Simultaneous Type and Stage Detection of Colorectal Cancer Polyps. Ann Biomed Eng, Vol.51, pp.1499–1512., 2022 DOI: https://doi.org/10.1007/s10439-023-03153-w

Published
2023-12-21
How to Cite
Mulyanto, E., Yuniarno, E. M., Hafidz, I., Budiyanta, N. E., Priyadi, A., & Hery Purnomo, M. (2023). Modified Deep Pattern Classifier on Indonesian Traditional Dance Spatio-Temporal Data. EMITTER International Journal of Engineering Technology, 11(2), 214-233. https://doi.org/10.24003/emitter.v11i2.832
Section
Articles