The Network Slicing and Performance Analysis of 6G Networks using Machine Learning

  • Mahesh H. B Department of Computer Science & Engineering, PES University, Bengaluru | Visvesvaraya Technological University, Belagavi, India
  • Ali Ahammed G. F Department of Computer Science & Engineering, PG Center, Visvesvaraya Technological University, Mysuru, India
  • Usha S. M JSS Academy of Technical Education, Bangalore, India
Keywords: 6G Technologies, KD Tree, Slicing, Connection ratio, Latency

Abstract

6G technology is designed to provide users with faster and more reliable data  transfer as compared to the current 5G technology. 6G is rapidly evolving and provides a large bandwidth, even in underserved areas. This technology is extremely anticipated and is currently booming for its ability to deliver massive network capacity, low latency, and a highly improved user experience. Its scope is immense, and it’s designed to connect everyone and everything in the world. It includes new deployment models and services with extended user capacity. This study proposes a network slicing simulator that uses hardcoded base station coordinates to randomly distribute client locations to help analyse the performance of a particular base station architecture. When a client wants to locate the closest base station, it queries the simulator, which stores base station coordinates in a K-Dimensional tree. Throughout the simulation, the user follows a pattern that continues until the time limit is achieved. It gauges multiple statistics such as client connection ratio, client count per second, Client count per slice, latency, and the new location of the client. The K-D tree handover algorithm proposed here allows the user to connect to the nearest base stations after fulfilling the required criteria. This algorithm ensures the quality requirements and decides among the base stations the user connects to.

Downloads

Download data is not yet available.

References

C. Yang, W. M. Shen, and X. B. Wang, The internet of things in manufacturing: Key issues and potential applications, IEEE Syst. Man Cybern. Mag., vol. 4, no. 1, pp. 6–15, 2018. DOI: https://doi.org/10.1109/MSMC.2017.2702391

E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, 6G: The next frontier: From holographic messaging to artificial intelligence using sub-terahertz and visible light communication, IEEE Vehicular Technol. Mag., vol. 14, no. 3, pp. 42–50, 2019. DOI: https://doi.org/10.1109/MVT.2019.2921162

R. H. Wen, G. Feng, J. H. Tang, T. Q. S. Quek, G. Wang, W. Tan, and S. Qin, On robustness of network slicing for next-generation mobile networks, IEEE Trans. Commun., vol. 67, no. 1, pp. 430–444, 2019. DOI: https://doi.org/10.1109/TCOMM.2018.2868652

J.Mei, X. B. Wang, and K. Zheng, Intelligent network slicing for V2X services toward 5G, IEEE Netw., vol. 33, no. 6, pp. 196–204, 2019. DOI: https://doi.org/10.1109/MNET.001.1800528

T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis; and T. Magedanz, EASE: EPC as a service to ease mobile core network deployment over cloud, IEEE Netw, vol. 29, no. 2, pp. 78–88, 2015. DOI: https://doi.org/10.1109/MNET.2015.7064907

M. Bagaa, T. Taleb, A. Laghrissi, A. Ksentini, and H. Flinck, Coalitional game for the creation of efficient virtual core network slices in 5G mobile systems, IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 469–484, 2018. DOI: https://doi.org/10.1109/JSAC.2018.2815398

P. Caballero, A. Banchs, G. de Veciana, X. Costa-P´erez, and A. Azcorra, Network slicing for guaranteed rate services: Admission control and resource allocation games, IEEE Trans. Wirel. Commun., vol. 17, no. 10, pp. 6419–6432, 2018. DOI: https://doi.org/10.1109/TWC.2018.2859918

Y. L. Lee, J. Loo, T. C. Chuah, and L. C. Wang, Dynamic network slicing for multitenant heterogeneous cloud radio access networks, IEEE Trans. Wirel. Commun., vol. 17, no 4, pp. 2146–2161, 2018.

Y. N. Liu, X. B. Wang, G. Boudreau, A. B. Sediq, and H. Abou-Zeid, Deep learning based hotspot prediction and beam management for adaptive virtual small cell in 5G Networks, IEEE Trans. Emerg. Topics Comput. Intell., vol. 4, no. 1, pp. 83–94, 2020. DOI: https://doi.org/10.1109/TETCI.2019.2926769

Y. L. Lee, J. Loo, T. C. Chuah, and L. C. Wang, Dynamic network slicing for multitenant heterogeneous cloud radio access networks, IEEE Trans. Wirel. Commun., vol. 17, no. 4, pp. 2146–2161, 2018. DOI: https://doi.org/10.1109/TWC.2017.2789294

J. L. Li, W. S. Shi, P. Yang, Q. Ye, X. S. Shen, X. Li, and J. Rao, A hierarchical soft RAN slicing framework for differentiated service provisioning, IEEE Wirel. Commun., doi: 10.1109/MWC.001.2000010. DOI: https://doi.org/10.1109/MWC.001.2000010

M. Zambianco and G. Verticale, Interference minimization in 5G physical-layer network slicing, IEEE Trans. Commun., vol. 68, no. 7, pp. 4554–4564, 2020. DOI: https://doi.org/10.1109/TCOMM.2020.2983009

Jie Mei, Xianbin Wang, and khan zheng, An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond and 6G networks, Intelligent and Converged Networks, 2020, 1(3): 281–294, ISSN 2708-6240, DOI: 10.23919/ICN.2020.0019 DOI: https://doi.org/10.23919/ICN.2020.0019

N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. Shen, “Software defined space-air-ground integrated vehicular networks: Challenges and solutions,” IEEE Commun. Mag., vol. 55, no. 7, pp. 101–109, 2017. DOI: https://doi.org/10.1109/MCOM.2017.1601156

X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” submitted to IEEE Commun. Surveys Tuts., 2021. DOI: https://doi.org/10.1109/COMST.2021.3135829

R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the IoT context:A survey on technical features, scenarios, and architectural models,” Proc. IEEE, vol. 108, no. 10, pp. 1785–1824, Oct. 2020. DOI: https://doi.org/10.1109/JPROC.2020.2998530

X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao, “AI-assisted network-slicing based next-generation wireless networks,” IEEE Open J. Veh. Technol., vol. 1, no. 1, pp. 45–66, 2020. DOI: https://doi.org/10.1109/OJVT.2020.2965100

W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-empowered future IoV with enhanced communication, computing, and caching,” Proc. IEEE, vol. 108, no. 2, pp. 274–291, 2020. DOI: https://doi.org/10.1109/JPROC.2019.2951169

X. You et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1, pp. 1–74, 2021.

A. Kaloxylos, “A survey and an analysis of network slicing in 5G networks,” IEEE Communications Standards Magazine, vol. 2, no. 1, pp. 60–65, 2018. DOI: https://doi.org/10.1109/MCOMSTD.2018.1700072

R. A. Addad, T. Taleb, M. Bagaa, D. L. C. Dutra, and H. Flinck, “Towards modeling cross-domain network slices for 5G,” in 2018 IEEE global communications conference (GLOBECOM). DOI: https://doi.org/10.1109/GLOCOM.2018.8647504

Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and softwarization: a survey on principles, enabling technologies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018. DOI: https://doi.org/10.1109/COMST.2018.2815638

A. Khare, R. Gupta, and P. K. Shukla, “Improving the protectioof wireless sensor network using a black hole optimization algorithm (BHOA) on best feasible node capture attack,” in IoT and Analytics for Sensor Networks, P. Nayak, S. Pal, and S. L. Peng, Eds., vol. 244 of Lecture Notes in Networks and Systems, Springer, Singapore, 2022. DOI: https://doi.org/10.1007/978-981-16-2919-8_30

C. Ssengonzi, O. P. Kogeda, and T. O. Olwal, “A survey of deep reinforcement learning application in 5G and beyond network slicing and virtualization,” Array, vol. 14, p. 100142, 2022. DOI: https://doi.org/10.1016/j.array.2022.100142

W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, and X. Li, “Dynamic RAN slicing for service-oriented vehicular networks via constrained learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2076–2089, 2021. DOI: https://doi.org/10.1109/JSAC.2020.3041405

C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, “Deep reinforcement learning for delay-oriented IoT task scheduling in spaceair-ground integrated network,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 911–925, 2021. DOI: https://doi.org/10.1109/TWC.2020.3029143

Adiraju, P. R., & Voore Subba Rao. (2022). Dynamically Energy-Efficient Resource Allocation in 5G CRAN Using Intelligence Algorithm. EMITTER International Journal of Engineering Technology, 10(1),217-230. https://doi.org/10.24003/emitter.v10i1.661 DOI: https://doi.org/10.24003/emitter.v10i1.661

Saeed, A. B., & Gitaffa, S. A.-H. (2019). FPGA Based Design of Artificial Neural Processor Used for Wireless Sensor Network. EMITTER International Journal of Engineering Technology, 7(1), 200-222. https://doi.org/10.24003/emitter.v7i1.346 DOI: https://doi.org/10.24003/emitter.v7i1.346

Published
2023-12-21
How to Cite
Mahesh H. B, Ali Ahammed G. F, & Usha S. M. (2023). The Network Slicing and Performance Analysis of 6G Networks using Machine Learning. EMITTER International Journal of Engineering Technology, 11(2), 174-191. https://doi.org/10.24003/emitter.v11i2.772
Section
Articles