Federated Learning Framework for IID and Non-IID datasets of Medical Images

  • Kavitha Srinivasan Department of CSE, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, India
  • Sainath Prasanna Department of CSE, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, India
  • Rohit Midha Department of CSE, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, India
  • Shraddhaa Mohan Department of CSE, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, India
Keywords: Federated Learning, Federated Learning framework, Classification task, Object detection task, Medical datasets


Advances have been made in the field of Machine Learning showing that it is an effective tool that can be used for solving real world problems. This success is hugely attributed to the availability of accessible data which is not the case for many fields such as healthcare, a primary reason being the issue of privacy. Federated Learning (FL) is a technique that can be used to overcome the limitation of availability of data at a central location and allows for training machine learning models on private data or data that cannot be directly accessed. It allows the use of data to be decoupled from the governance (or control) over data. In this paper, we present an easy-to-use framework that provides a complete pipeline to let researchers and end users train any model on image data from various sources in a federated manner. We also show a comparison in results between models trained in a federated fashion and models trained in a centralized fashion for Independent and Identically Distributed (IID) and non IID datasets. The Intracranial Brain Hemorrhage dataset and the Pneumonia Detection dataset provided by the Radiological Society of North America (RSNA) are used for validating the FL framework and comparative analysis.


Download data is not yet available.


O. Russakovsky, J. Deng, H. Su, J Krause, S. Satheesh, S. Ma, SS. Ma and L. Fei-Fei, Imagenet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015. DOI: https://doi.org/10.1007/s11263-015-0816-y

C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau, and J. O’Connell, The UK Biobank Resource with Deep Phenotyping and Genomic Data, Nature, vol. 562, no. 7726, pp. 203–209, 2018. DOI: https://doi.org/10.1038/s41586-018-0579-z

M. Shaheen M. S. Farooq, T. Umer and B. S. Kim, Applications of Federated Learning; Taxonomy, Challenges, and Research Trends, Electronics, vol. 11, no. 4, pp. 1-33, 2022. DOI: https://doi.org/10.3390/electronics11040670

D. Ng, X. Lan, M. M Yao, W. P. Chan and M. Feng, Federated Learning: A Collaborative Effort to achieve better Medical Imaging Models for Individual Sites that have Small, Labelled Datasets, Quant Imaging Med Surg. vol. 11, no. 2, pp. 852-857, 2021. DOI: https://doi.org/10.21037/qims-20-595

J. M. Sheller, B. Edwards, G. Anthony Reina, J. Martin, S. Pati, A. Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus and Rivka R. Colenand Spyridon Bakas, Federated Learning in Medicine: Facilitating Multi‑Institutional Collaborations without Sharing Patient Data, Scientific reports. vol. 10, no. 1, 2020.

K. V. Sarma, S. Harmon S, T. Sanford, H. R. Roth, Z. Xu, J. Tetreault, D. Xu, M. G. Flores, A. G Raman, R. Kulkarni and B. J. Wood, Federated Learning improves Site Performance in Multicenter Deep Learning without Data Sharing, Journal of the American Medical Informatics Association, vol. 28, no. 6, pp. 1259-1264, 2021. DOI: https://doi.org/10.1093/jamia/ocaa341

T. Naeem Anees, R. A. Naqvi and W. K. A. Loh, A Comprehensive Analysis of Recent Deep and Federated Learning based Methodologies for Brain Tumor Diagnosis, J. Pers. Med. vol. 12, no. 2, 2022. DOI: https://doi.org/10.3390/jpm12020275

I. Dayan, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z. Abidin, A. Liu, A. B. Costa, B.. J. Wood, C. S. Tsai and C. H. Wang, Federated Learning for Predicting Clinical Outcomes in Patients with COVID-19, Nature Medicine, . vol. 27, pp. 1735-1743, 2021. DOI: https://doi.org/10.1038/s41591-021-01506-3

A, Rahman, M. S. Hossain, G. Muhammad et al., Federated Learning-based AI Approaches in Smart Healthcare: Concepts, Taxonomies, Challenges and Open Issues, Cluster Computers, 2022. https://doi.org/10.1007/s10586-022-03658-4 DOI: https://doi.org/10.1007/s10586-022-03658-4

M. J. Sheller, B. Edwards and G. A. Reina, Federated Learning in Medicine: Facilitating Multi institutional Collaborations without Sharing Patient Data, Scientific Reports, vol. 12598, pp. 1-14, 2020. DOI: https://doi.org/10.1038/s41598-020-69250-1

N. Rieke, J. Hancox and W. Li, The Future of Digital Health with Federated Learning, Digital Medicine, vol. 119, pp. 1-7, 2020. DOI: https://doi.org/10.1038/s41746-020-00323-1

S. M. Smith, D. Vidaurre, F. Alfaro-Almagro, T. E. Nichols, and K. L. Miller, Estimation of Brain Age Delta from Brain Imaging, Neuroimage, vol. 200, pp. 528–539, 2019. DOI: https://doi.org/10.1016/j.neuroimage.2019.06.017

M. Nieuwenhuis, H. G. Schnack, N. E. Van Haren, J. Lappin, C. Morgan, A. A. Reinders, D. Gutierrez-Tordesillas, R. Roiz-Santiañez, M. S. Schaufelberger and P. G. Rosa, Multi-center MRI Prediction Models: Predicting Sex and Illness Course in First Episode Psychosis Patients, Neuroimage, vol. 145, pp. 246–253, 2017. DOI: https://doi.org/10.1016/j.neuroimage.2016.07.027

D. Kondor, B. Hashemian, Y. A. De Montjoye, and C. Ratti, Towards Matching User Mobility Traces in Large-scale Datasets, IEEE Transactions on Big Data, vol. 6, no. 4, pp. 714–726, 2018. DOI: https://doi.org/10.1109/TBDATA.2018.2871693

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas, Communication-efficient Learning of Deep Networks from Decentralized Data, Artificial Intelligence and Statistics, pp. 1273–1282, 2017.

R. Wightman, (2020, January 17), Pytorch Image Models, https://github.com/rwightman/pytorch-image-models

M. Tan, and Q. Le, Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks, Proceedings of International Conference on Machine Learning, pp. 6105–6114, 2019.

M. Shafiq, Z. Gu, Deep Residual Learning for Image Recognition: A Survey, Applied Sciences, vol. 12, no. 18, 2022. DOI: https://doi.org/10.3390/app12188972

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated Residual Transformations for Deep Neural Networks, Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 1492–1500, 2017. DOI: https://doi.org/10.1109/CVPR.2017.634

X. Yao, T. Huang, R. X. Zhang, R. Li, and L. Sun, Federated Learning with Unbiased Gradient Aggregation and Controllable Meta Updating, arXiv preprint arXiv:1910.08234, 2019.

A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. Kalinin, Albumentations: Fast and Flexible Image Augmentations, Information, vol. 11, no. 2, pp. 125, 2020. DOI: https://doi.org/10.3390/info11020125

D. P. Kingma, and J. Ba, Adam: A Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980, 2014.

S. Ren, K. He, R. Girshick, and J. Sun, Faster RCNN: Towards Real-time Object Detection with Region Proposal Networks, arXiv preprint arXiv:1506.01497, 2015.

D. Bolya, S. Foley, J. Hays, and J. Hoffman, Tide: A General Toolbox for Identifying Object Detection Errors, arXiv preprint arXiv:2008.08115, 2020. DOI: https://doi.org/10.1007/978-3-030-58580-8_33

Z. Xiao, X. Xu, H. Xing, F. Song, X. Wang, and B. Zhao, A Federated Learning System with Enhanced Feature Extraction for Human Activity Recognition, Knowledge-Based Systems, vol. 229, 2021. DOI: https://doi.org/10.1016/j.knosys.2021.107338

How to Cite
Srinivasan, K., Prasanna, S., Midha, R., & Mohan, S. (2023). Federated Learning Framework for IID and Non-IID datasets of Medical Images. EMITTER International Journal of Engineering Technology, 11(1), 1-20. https://doi.org/10.24003/emitter.v11i1.742