Secure Real-time Data Transmission for Drone Delivery Services using Forward Prediction Scheduling SCTP
Abstract
Drone technology is considered the most effective solution for the improvement of various industrial fields. As a delivery service, drones need a secure communication system that is also able to manage all of the information data in real-time. However, because the data transmission process occurs in a wireless network, data will be sent over a channel that is more unstable and vulnerable to attack. Thus, this research, purposes a Forward Prediction Scheduling-based Stream Control Transmission Protocol (FPS-SCTP) scheme that is implemented on drone data transmission system. This scheme supports piggybacking, multi-streaming, and Late Messages Filter (LMF) which will improve the real-time transmission process in IEEE 802.11 wireless network. Meanwhile, on the cybersecurity aspect, this scheme provides the embedded option feature to enable the encryption mechanism using AES and the digital signatures mechanism using ECDSA. The results show that the FPS-SCTP scheme has better network performance than the default SCTP, and provides full security services with low computation time. This research contributes to providing a communication protocol scheme that is suitable for use on the internet of drones’ environment, both in real-time and reliable security levels.
Downloads
References
Choudhary G, Sharma V, Gupta T, Kim J, You I. Internet of Drones (IoD): Threats, Vulnerability, and Security Perspectives. :14.
Gharibi M, Boutaba R, Waslander SL. Internet of Drones. IEEE Access. 2016;4:1148–62. DOI: https://doi.org/10.1109/ACCESS.2016.2537208
Ronaldo F, Pramadihanto D, Sudarsono A. Secure Communication System of Drone Service using Hybrid Cryptography over 4G/LTE Network. In: 2020 International Electronics Symposium (IES) [Internet]. Surabaya, Indonesia: IEEE; 2020 [cited 2021 Dec 1]. p. 116–22. Available from: https://ieeexplore.ieee.org/document/9231951/ DOI: https://doi.org/10.1109/IES50839.2020.9231951
H. Kopetz, P. Puschner. Real-Time Communication [Internet]. Insitute of Computer Engineering - TU WIEN Informatics; 2017 [cited 2020 Sep 26]. Available from: https://ti.tuwien.ac.at
Stewart R. Stream Control Transmission Protocol [Internet]. RFC Editor; 2007 Sep [cited 2021 Dec 1] p. RFC4960. Report No.: RFC4960. Available from: https://www.rfc-editor.org/info/rfc4960
B. A. Forouzan. Stream Control Transmission Protocol (SCTP). In: TCP/IP PROTOCOL SUITE, FOURTH EDITION. New York, America: McGraw-Hill; 2010. p. 502–38.
Wiss T, Forsstrom S. Feasibility and performance evaluation of SCTP for the industrial internet of things. In: IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society [Internet]. Beijing: IEEE; 2017 [cited 2021 Dec 1]. p. 6101–6. Available from: http://ieeexplore.ieee.org/document/8217060/ DOI: https://doi.org/10.1109/IECON.2017.8217060
Sun W, Yu S, Xing Y, Zhang D. A Multi-path Switching Method Based on SCTP for Heterogeneous Wireless Networks in Smart IoT. In: 2018 IEEE International Conference on Smart Internet of Things (SmartIoT) [Internet]. Xi’an: IEEE; 2018 [cited 2021 Dec 1]. p. 15–22. Available from: https://ieeexplore.ieee.org/document/8465519/ DOI: https://doi.org/10.1109/SmartIoT.2018.00013
Vivekananda GN, Reddy PC. PERFORMANCE EVALUATION OF TCP, UDP, AND SCTP IN MANETS. 2018;13(9):6.
Lai WK, Jhan J-J, Li J-W. A Cross-Layer SCTP Scheme With Redundant Detection for Real-Time Transmissions in IEEE 802.11 Wireless Networks. IEEE Access. 2019;7:114086–101. DOI: https://doi.org/10.1109/ACCESS.2019.2931779
Stewart R, Ramalho M, Xie Q, Tuexen M, Conrad P. Stream Control Transmission Protocol (SCTP) Partial Reliability Extension [Internet]. RFC Editor; 2004 May [cited 2021 Dec 1] p. RFC3758. Report No.: RFC3758. Available from: https://www.rfc-editor.org/info/rfc3758 DOI: https://doi.org/10.17487/rfc3758
Jungmaier A, Rescorla E, Tuexen M. Transport Layer Security over Stream Control Transmission Protocol [Internet]. RFC Editor; 2002 Dec [cited 2021 Dec 1] p. RFC3436. Report No.: RFC3436. Available from: https://www.rfc-editor.org/info/rfc3436 DOI: https://doi.org/10.17487/rfc3436
Tuexen M, Seggelmann R, Rescorla E. Datagram Transport Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP) [Internet]. RFC Editor; 2011 Jan [cited 2021 Dec 1] p. RFC6083. Report No.: RFC6083. Available from: https://www.rfc-editor.org/info/rfc6083 DOI: https://doi.org/10.17487/rfc6083
Bellovin S, Ioannidis J, Keromytis A, Stewart R. On the Use of Stream Control Transmission Protocol (SCTP) with IPsec [Internet]. RFC Editor; 2003 Jul [cited 2021 Dec 1] p. RFC3554. Report No.: RFC3554. Available from: https://www.rfc-editor.org/info/rfc3554 DOI: https://doi.org/10.17487/rfc3554
Tuexen M, Stewart R, Lei P, Rescorla E. Authenticated Chunks for the Stream Control Transmission Protocol (SCTP) [Internet]. RFC Editor; 2007 Aug [cited 2021 Dec 1] p. RFC4895. Report No.: RFC4895. Available from: https://www.rfc-editor.org/info/rfc4895 DOI: https://doi.org/10.17487/rfc4895
Hasselstro N, Hjern G, Hoorn R, Hult M, Syre J, Alfredsson S, et al. The Design, Implementation, and Performance Evaluation of Secure Socket SCTP 2.0. Sci Technol. :52.
Dutta IK, Ghosh B, Bayoumi M. Lightweight Cryptography for Internet of Insecure Things: A Survey. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) [Internet]. Las Vegas, NV, USA: IEEE; 2019 [cited 2021 Dec 1]. p. 0475–81. Available from: https://ieeexplore.ieee.org/document/8666557/ DOI: https://doi.org/10.1109/CCWC.2019.8666557
Mallouli F, Hellal A, Sharief Saeed N, Abdulraheem Alzahrani F. A Survey on Cryptography: Comparative Study between RSA vs ECC Algorithms, and RSA vs El-Gamal Algorithms. In: 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom) [Internet]. Paris, France: IEEE; 2019 [cited 2021 Dec 1]. p. 173–6. Available from: https://ieeexplore.ieee.org/document/8854027/ DOI: https://doi.org/10.1109/CSCloud/EdgeCom.2019.00022
Purnamasari DN, Sudarsono A, Kristalina P. Medical Image Encryption Using Modified Identity Based Encryption. Emit Int J Eng Technol [Internet]. 2019 Dec 1 [cited 2022 Jun 2];7(2). Available from: http://emitter.pens.ac.id/index.php/emitter/article/view/405 DOI: https://doi.org/10.24003/emitter.v7i2.405
Copyright (c) 2022 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.