Wavelet Transform and Convolutional Neural Network Based Techniques in Combating Sudden Cardiac Death

  • Wanzita Shilla Lanzhou Jiaotong University, School of Electronics and Information Engineering, China
  • Xiaopeng Wang Lanzhou Jiaotong University, School of Electronics and Information Engineering, China
Keywords: Sudden Cardiac Death, Arrhythmia, Electrocardiogram, Wavelet Transform, Convolutional Neural Network


Sudden cardiac death (SCD) is a global threat that demands our attention and research. Statistics show that 50% of cardiac deaths are sudden cardiac death. Therefore, early cardiac arrhythmia detection may lead to timely and proper treatment, saving lives. We proposed a less complex, fast, and more efficient algorithm that quickly and accurately detects heart abnormalities. Firstly, we carefully examined 23 ECG signals of the patients who died from SCD to detect their arrhythmias. Then, we trained a deep learning model to auto-detect and distinguish the most lethal arrhythmias in SCD: Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF), from Normal Sinus Rhythm (NSR). Our work combined two techniques: Wavelet Transform (WT) and pre-trained Convolutional Neural Network (CNN). WT was used to convert an ECG signal into scalogram and CNN for features extraction and arrhythmias classification. When examined in the MIT-BIH Normal Sinus Rhythm, MIT-BIH Malignant Ventricular Ectopy, and Creighton University Ventricular Tachyarrhythmia databases, the proposed methodology obtained an accuracy of 98.7% and an F-score of 0.9867, despite being less expensive and simple to execute.


Download data is not yet available.


Kuriachan VP, Sumner GL, Mitchell LB, Sudden Cardiac Death, Curr Probl Cardiol, vol. 40(4), pp. 133–200, April 2015 . DOI: https://doi.org/10.1016/j.cpcardiol.2015.01.002

Feng X-F, Hai J-J, Ma Y, Wang Z-Q, Tse H-F, Sudden Cardiac Death in Mainland China, Circ Arrhythm Electrophysiol , November 2018 DOI: https://doi.org/10.1161/CIRCEP.118.006684

Zhang S, Sudden cardiac death in China: current status and future perspectives, EP Eur, vol. 17(suppl_2), pp. ii14–8, October 2015 . DOI: https://doi.org/10.1093/europace/euv143

Zhang J, Zhou X, Xing Q, Li Y, Zhang L, Zhou Q, et al., Sudden cardiac death in the Kazakh and Han peoples of Xinjiang China,Medicine (Baltimore), vol. 18126, pp. 98(50), December 2019. DOI: https://doi.org/10.1097/MD.0000000000018126

MA T, A B, W S, G N, A C, KM K, et al., Status of cardiac arrhythmia services in Africa in 2018, a PASCAR Sudden Cardiac Death Task Force report, Cardiovasc J Afr, vol. 29(2), pp. 115–21, 2018. DOI: https://doi.org/10.5830/CVJA-2018-027

Chin A, Sudden cardiac death in Africa, Cardiovasc J Afr. , vol. 25(4), pp. 151–2, 2014.

Bonny A, Ngantcha M, Scholtz W, Chin A, Nel G, Anzouan-Kacou J-B, et al., Cardiac Arrhythmias in Africa: Epidemiology, Management Challenges, and Perspectives, J Am Coll Cardiol. , vol. 8;73(1), pp. 100–9, January 2019 . DOI: https://doi.org/10.1016/j.jacc.2018.09.084

Sudden Cardiac Death (SCD): Symptoms, Causes , https://my.clevelandclinic.org/health/diseases/17522-sudden-cardiac-death-sudden-cardiac-arrest

Khan AH, Hussain M, Malik MK, Arrhythmia Classification Techniques Using Deep Neural Network, vol. 20; e9919588, April 2021. DOI: https://doi.org/10.1155/2021/9919588

Srinivasan NT, Barts Heart Centre, St Bartholomew’s Hospital, London, UK, Schilling RJ, Barts Heart Centre, St Bartholomew’s Hospital, London, UK, Sudden Cardiac Death and Arrhythmias,Arrhythmia Electrophysiol Rev, vol. 7(2), pp. 111, 2018. DOI: https://doi.org/10.15420/aer.2018:15:2

Assodiky H, Syarif I, Badriyah T, Arrhythmia Classification Using Long Short-Term Memory with Adaptive Learning Rate, Emit Int J Eng Technol, vol. 6(1), pp. 75–91, June 2018 . DOI: https://doi.org/10.24003/emitter.v6i1.265

Moore B, Semsarian C, Chan KH, Sy RW, Sudden Cardiac Death and Ventricular Arrhythmias in Hypertrophic Cardiomyopathy. Heart Lung Circ, vol. 28(1), pp. 146–54, January 2019. DOI: https://doi.org/10.1016/j.hlc.2018.07.019

Jazayeri M-A, Emert MP, Sudden Cardiac Death, Med Clin North Am. , vol. 103(5), pp. 913–30, September 2019 . DOI: https://doi.org/10.1016/j.mcna.2019.04.006

Murugesan B, Ravichandran V, Ram K, S.P. P, Joseph J, Shankaranarayana SM, et al, ECGNet: Deep Network for Arrhythmia Classification, IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6, 2018. DOI: https://doi.org/10.1109/MeMeA.2018.8438739

Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J, ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network, Physiol Meas,vol. 39(9):094006, September 2018. DOI: https://doi.org/10.1088/1361-6579/aad9ed

Wu M, Lu Y, Yang W, Wong SY, A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network, Front Comput Neurosci, vol. 14, pp. 106, 2021. DOI: https://doi.org/10.3389/fncom.2020.564015

Acharya UR, Fujita H, Lih OS, Adam M, Tan JH, Chua CK, Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network, Knowl-Based Syst, vol. 132, pp. 62–71, 2017 Sep. DOI: https://doi.org/10.1016/j.knosys.2017.06.003

Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al, Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning, IEEE Trans Med Imaging, vol. 35(5), pp. 1285–98, May 2016. DOI: https://doi.org/10.1109/TMI.2016.2528162

Isin A, Ozdalili S, Cardiac arrhythmia detection using deep learning, Procedia Comput Sci. , vol. 120, pp. 268–75, 2017. DOI: https://doi.org/10.1016/j.procs.2017.11.238

Mashrur FR, Dutta Roy A, Saha DK, Automatic Identification of Arrhythmia from ECG Using AlexNet Convolutional Neural Network, International Conference on Electrical Information and Communication Technology (EICT) Khulna, Bangladesh, IEEE, pp. 1–5 2019. DOI: https://doi.org/10.1109/EICT48899.2019.9068806

Alaskar H, Alzhrani N, Hussain A, Almarshed F, The Implementation of Pretrained AlexNet on PCG Classification, Intelligent Computing Methodologies, Cham: Springer International Publishing, pp. 784–94, 2019. DOI: https://doi.org/10.1007/978-3-030-26766-7_71

Ara I, ECG Signal Analysis Using Wavelet Transform, vol. 5(5), pp.7, 2014.

J.Kameenoff, J.Kameenoff, Signal Processing Techniques for Removing Noise from ECG Signals, Biomed Eng Res, vol. 8;1(1), pp. 1, March 2017.

Faust O, Kareem M, Ali A, Ciaccio EJ, Acharya UR, Automated Arrhythmia Detection Based on RR Intervals, Diagnostics, vol. 11(8), pp. 1446, Augast 2021. DOI: https://doi.org/10.3390/diagnostics11081446

Razavi SR, Mohammadi MHD, R-peak Detection in Electrocardiogram Signals Using Continuous Wavelet Transform, vol. 14, 2017.

Velic M, Padavic I, Car S, Computer aided ECG analysis; State of the art and upcoming challenges, Eurocon 2013. Zagreb, Croatia: IEEE, June 2013. DOI: https://doi.org/10.1109/EUROCON.2013.6625218

PhysioBank ATM, https://archive.physionet.org/cgi-bin/atm/ATM

Krizhevsky A, Sutskever I, Hinton GE, ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems, Curran Associates, Inc, 2012.

Wang D-H, Zhou W, Li J, Wu Y, Zhu S, Exploring Misclassification Information for Fine-Grained Image Classification, Sensors, vol. 21(12), pp. 4176, January 2021. DOI: https://doi.org/10.3390/s21124176

How to Cite
Shilla, W., & Wang, X. (2021). Wavelet Transform and Convolutional Neural Network Based Techniques in Combating Sudden Cardiac Death. EMITTER International Journal of Engineering Technology, 9(2), 377-389. https://doi.org/10.24003/emitter.v9i2.663