Towards Improvement of LSTM and SVM Approach for Multiclass Fall Detection System

  • Herti Miawarni Institut Teknologi Sepuluh Nopember, Indonesia
  • Eko Setijadi Institut Teknologi Sepuluh Nopember, Indonesia
  • Tri Arief Sardjono Institut Teknologi Sepuluh Nopember, Indonesia
  • Wijayanti Universitas Diponegoro, Semarang
  • Mauridhi Hery Purnomo Institut Teknologi Sepuluh Nopember, Indonesia
Keywords: Fall Detection System, Sensors-based Monitoring, Accelerometer, Gyroscope, LSTM, SVM

Abstract

Telemonitoring of human physiological data helps detect emergency occurrences for subsequent medical diagnosis in daily living environments. One of the fatal emergencies in falling incidents. The goal of this paper is to detect significant incidents such as falls. The fall detection system is essential for human body movement investigation for medical practitioners, researchers, and healthcare businesses. Accelerometers have been presented as a practical, low-cost, and dependable approach for detecting and predicting outpatient movements in the user. The accurate detection of body movements based on accelerometer data enables the creation of more dependable systems for incorporating long-term development in physiological remarks. This research describes an accelerometer-based platform for detecting users' body movement when they fall. The ADXL345, MMA8451q, and ITG3200 body sensors capture activity data, subsequently classified into 15 fall incident classes based on SisFall dataset. Falling incidents classification is performed using Long Short-Term Memory results in best AUC-ROC value of 97.7% and best calculation time of 6.16 seconds. Meanwhile, Support Vector Machines results in the best AUC-ROC value of 98.5% and best calculation times of 17.05 seconds.

Downloads

Download data is not yet available.

References

J. Strauss, F. Witoelar, and B. Sikoki, The fifth wave of the Indonesia family life survey: overview and field report, vol. 1. RAND Santa Monica, CA, 2016. DOI: https://doi.org/10.7249/WR1143.1

S. Nugraha, I. Hapsari, S. Pengpid, K. Peltzer, and others, Multimorbidity Increases the Risk of Falling among Indonesian Elderly Living in Community Dwelling and Elderly Home: A Cross Sectional Study, Indian J. Public Heal. Res. & Dev., vol. 10, no. 11, 2019. DOI: https://doi.org/10.5958/0976-5506.2019.03898.1

S. Pengpid and K. Peltzer, Prevalence and risk factors associated with injurious falls among community-dwelling older adults in Indonesia, Curr. Gerontol. Geriatr. Res., vol. 2018, 2018. DOI: https://doi.org/10.1155/2018/5964305

N. Zurbuchen, A. Wilde, and P. Bruegger, A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection, Sensors, vol. 21, no. 3, p. 938, Jan. 2021, doi: 10.3390/s21030938. DOI: https://doi.org/10.3390/s21030938

A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla, SisFall: A fall and movement dataset, Sensors, vol. 17, no. 1, p. 198, 2017. DOI: https://doi.org/10.3390/s17010198

H. Miawarni et al., Fall Detection System for Elderly based on 2D LiDAR: A Preliminary Study of Fall Incident and Activities of Daily Living (ADL) Detection, in 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Nov. 2020, pp. 1–5, doi: 10.1109/CENIM51130.2020.9298000. DOI: https://doi.org/10.1109/CENIM51130.2020.9298000

H. Nait-Charif and S. J. McKenna, Activity summarisation and fall detection in a supportive home environment, in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 2004, vol. 4, pp. 323–326. DOI: https://doi.org/10.1109/ICPR.2004.1333768

B. Jansen and R. Deklerck, Context aware inactivity recognition for visual fall detection, in 2006 Pervasive Health Conference and Workshops, 2006, pp. 1–4. DOI: https://doi.org/10.1109/PCTHEALTH.2006.361657

S.-G. Miaou, P.-H. Sung, and C.-Y. Huang, A customized human fall detection system using omni-camera images and personal information, in 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2., 2006, pp. 39–42.

C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, Monocular 3D head tracking to detect falls of elderly people, in 2006 international conference of the IEEE engineering in medicine and biology society, 2006, pp. 6384–6387. DOI: https://doi.org/10.1109/IEMBS.2006.260829

F. R. Allen, E. Ambikairajah, N. H. Lovell, and B. G. Celler, An adapted gaussian mixture model approach to accelerometry-based movement classification using time-domain features, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 3600–3603. DOI: https://doi.org/10.1109/IEMBS.2006.259613

M. Prado, J. Reina-Tosina, and L. Roa, Distributed intelligent architecture for falling detection and physical activity analysis in the elderly, in Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society][Engineering in Medicine and Biology, 2002, vol. 3, pp. 1910–1911.

S. Luo and Q. Hu, A dynamic motion pattern analysis approach to fall detection, in IEEE International Workshop on Biomedical Circuits and Systems, 2004., 2004, pp. 1–5.

Y. Chen and Y. Xue, A deep learning approach to human activity recognition based on single accelerometer, in 2015 ieee international conference on systems, man, and cybernetics, 2015, pp. 1488–1492. DOI: https://doi.org/10.1109/SMC.2015.263

G. Santos, P. Endo, K. Monteiro, E. Rocha, I. Silva, and T. Lynn, Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks, Sensors, vol. 19, no. 7, p. 1644, Apr. 2019, doi: 10.3390/s19071644. DOI: https://doi.org/10.3390/s19071644

A. Nait Aicha, G. Englebienne, K. S. Van Schooten, M. Pijnappels, and B. Kröse, Deep learning to predict falls in older adults based on daily-life trunk accelerometry, Sensors, vol. 18, no. 5, p. 1654, 2018. DOI: https://doi.org/10.3390/s18051654

T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H. Ngu, and C. C. Rivera, SmartFall: A smartwatch-based fall detection system using deep learning, Sensors, vol. 18, no. 10, p. 3363, 2018. DOI: https://doi.org/10.3390/s18103363

N. Zurbuchen, P. Bruegger, and A. Wilde, A Comparison of Machine Learning Algorithms for Fall Detection using Wearable Sensors, in 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Feb. 2020, pp. 427–431, doi: 10.1109/ICAIIC48513.2020.9065205. DOI: https://doi.org/10.1109/ICAIIC48513.2020.9065205

D. van Ravenzwaaij and J. P. A. Ioannidis, True and false positive rates for different criteria of evaluating statistical evidence from clinical trials, BMC Med. Res. Methodol., vol. 19, no. 1, pp. 1–10, 2019. DOI: https://doi.org/10.1186/s12874-019-0865-y

D. M. W. Powers, Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation, arXiv Prepr. arXiv2010.16061, 2020.

S. Narkhede, Understanding AUC - ROC Curve, Towards Data Science, 2018. https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

H. Assodiky, I. Syarif, and T. Badriyah, Arrhythmia Classification Using Long Short-Term Memory with Adaptive Learning Rate, Emit. Int. J. Eng. Technol., vol. 6, no. 1, pp. 75–91, Jul. 2018, doi: 10.24003/emitter.v6i1.265. DOI: https://doi.org/10.24003/emitter.v6i1.265

D. P. Adi, L. Junaedi, Frismanda, A. B. Gumelar, and A. A. Kristanto, Exploring the Time-efficient Evolutionary-based Feature Selection Algorithms for Speech Data under Stressful Work Condition, Emit. Int. J. Eng. Technol., vol. 9, no. 1, pp. 60–74, Feb. 2021, doi: 10.24003/emitter.v9i1.571. DOI: https://doi.org/10.24003/emitter.v9i1.571

E. Casilari, J.-A. Santoyo-Ramón, and J.-M. Cano-García, Analysis of Public Datasets for Wearable Fall Detection Systems, Sensors, vol. 17, no. 7, p. 1513, Jun. 2017, doi: 10.3390/s17071513. DOI: https://doi.org/10.3390/s17071513

C. Krupitzer, T. Sztyler, J. Edinger, M. Breitbach, H. Stuckenschmidt, and C. Becker, Beyond Position-Awareness—Extending a Self-Adaptive Fall Detection System, Pervasive Mob. Comput., vol. 58, p. 101026, Aug. 2019, doi: 10.1016/j.pmcj.2019.05.007. DOI: https://doi.org/10.1016/j.pmcj.2019.05.007

M. L. Yadav and B. Roychoudhury, Handling Missing Values: A Study of Popular Imputation Packages in R, Knowledge-Based Syst., vol. 160, pp. 104–118, Nov. 2018, doi: 10.1016/j.knosys.2018.06.012. DOI: https://doi.org/10.1016/j.knosys.2018.06.012

P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel, J. Inf. Syst. Eng. Bus. Intell., vol. 6, no. 2, pp. 112–122, 2020. DOI: https://doi.org/10.20473/jisebi.6.2.112-122

P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti, A High Reliability Wearable Device for Elderly Fall Detection, IEEE Sens. J., vol. 15, no. 8, pp. 4544–4553, 2015, doi: 10.1109/JSEN.2015.2423562. DOI: https://doi.org/10.1109/JSEN.2015.2423562

I. Wayan Wiprayoga Wisesa and G. Mahardika, Fall detection algorithm based on accelerometer and gyroscope sensor data using Recurrent Neural Networks, IOP Conf. Ser. Earth Environ. Sci., vol. 258, no. 1, 2019, doi: 10.1088/1755-1315/258/1/012035. DOI: https://doi.org/10.1088/1755-1315/258/1/012035

W. Yu, X. Li, and J. Gonzalez, Fast Training of Deep LSTM Networks, in International Symposium on Neural Networks, 2019, pp. 3–10. DOI: https://doi.org/10.1007/978-3-030-22796-8_1

Published
2022-04-12
How to Cite
Miawarni, H., Eko Setijadi, Tri Arief Sardjono, Wijayanti, & Mauridhi Hery Purnomo. (2022). Towards Improvement of LSTM and SVM Approach for Multiclass Fall Detection System. EMITTER International Journal of Engineering Technology, 10(1), 31-46. https://doi.org/10.24003/emitter.v10i1.639
Section
Articles