Design Analysis of Array of Dipole Transmitters for Wireless Power Transfer

  • Victor Adewuyi Changchun University of Science and Technology, China
  • Junior Milembolo Miantezila Changchun University of Science and Technology, China
  • Eunice Owoola Hebei University of Technology, China
Keywords: Method of Moment, Directivity, Endfire, Broadside, Sidelobes


Considered in this work are the radiation aspects of a radio-frequency wireless power transfer system. Using the halfwave dipole as a candidate of choice, the current distribution on the antenna is first evaluated and presented using the versatile electromagnetic numerical Method of Moment technique (MoM). Using the current distribution obtained from the kernel of integration, the radiation fields for the single dipole element was obtained. Also, the analysis is extended to uniformly space linear antenna arrays using broadside and ordinary endfire arrays as candidates of interest. The simulation results for the broadside and endfire arrays were presented for 5, 6, 7, 10, 20 and 30 array elements at 0.3, 0.4 and 0.5 inter-element spacing. The peak directivity of broadside array occurs at 30 elements, 0.5λ spacing, and exceeds endfire array peak directivity by 11.27%. In addition to the advantage of an improved directivity achieved by the 7-element broadside array, an improved peak sidelobe level (PSLL) with the lowest PSLL for 7, 20, and 30 elements broadside array occurring at -12.0534 dB, -12.4298 dB, -12.6642 dB, -13.2246 dB, and -13.2747 dB respectively.


Download data is not yet available.


V. Adewuyi, J. Milembolo, M. Munochiveyi, and E. Owoola, Characterization of Compensation Topologies for Wireless Power Transfer System, in 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2021, pp. 1-6: IEEE. DOI:

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. J. s. Soljačić, Wireless power transfer via strongly coupled magnetic resonances, vol. 317, no. 5834, pp. 83-86, 2007. DOI:

M. Kline, I. Izyumin, B. Boser, and S. Sanders, Capacitive power transfer for contactless charging, in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp. 1398-1404: IEEE. DOI:

A. S. J. P. I. E. R. Poon, A general solution to wireless power transfer between two circular loop, vol. 148, pp. 171-182, 2014. DOI:

M. Xia and S. J. I. t. o. s. p. Aissa, On the efficiency of far-field wireless power transfer, vol. 63, no. 11, pp. 2835-2847, 2015. DOI:

J. Huang, Y. Zhou, Z. Ning, and H. J. I. w. c. Gharavi, Wireless power transfer and energy harvesting: Current status and future prospects, vol. 26, no. 4, pp. 163-169, 2019. DOI:

R.-F. Xue, K.-W. Cheng, M. J. I. T. o. C. Je, and S. I. R. Papers, High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation, vol. 60, no. 4, pp. 867-874, 2012. DOI:

N. J. E. W. Tesla and Engineer, The transmission of electrical energy without wires, pp. 429-431, 1904.

M. Schmorrow and D. Schmorrow, Innovation Lessons: Implications of Nikola Tesla’s Life for Today’s Engineers, Scientists, and Technology Designers, in International Conference on Human-Computer Interaction, 2015, pp. 183-186: Springer. DOI:

J. O. McSpadden and J. C. J. I. m. m. Mankins, Space solar power programs and microwave wireless power transmission technology, vol. 3, no. 4, pp. 46-57, 2002. DOI:

Q. Chen, K. Ozawa, Q. Yuan, K. J. I. A. Sawaya, and P. Magazine, Antenna characterization for wireless power-transmission system using near-field coupling, vol. 54, no. 4, pp. 108-116, 2012. DOI:

J. Murakami et al., Consideration on cordless power station-contactless power transmission system, vol. 32, no. 5, pp. 5037-5039, 1996. DOI:

K. Hatanaka et al., Power transmission of a desk with a cord-free power supply, vol. 38, no. 5, pp. 3329-3331, 2002. DOI:

D. Patil, M. K. Mcdonough, J. M. Miller, B. Fahimi, and P. T. J. I. T. o. T. E. Balsara, Wireless power transfer for vehicular applications: Overview and challenges, vol. 4, no. 1, pp. 3-37, 2017. DOI:

S. Jayalath, A. J. I. J. o. E. Khan, and S. T. i. P. Electronics, Design, Challenges, and Trends of Inductive Power Transfer Couplers for Electric Vehicles: A Review, 2020. DOI:

M. J. Schormans, Inductive Links for Biomedical Wireless Power and Data Telemetry: Circuits and Methods, UCL (University College London), 2019.

M. Schormans, V. Valente, A. J. I. T. o. B. C. Demosthenous, and Systems, Practical inductive link design for biomedical wireless power transfer: A tutorial, vol. 12, no. 5, pp. 1112-1130, 2018. DOI:

B. Lee, M. Kiani, M. J. I. t. o. b. c. Ghovanloo, and systems, A triple-loop inductive power transmission system for biomedical applications, vol. 10, no. 1, pp. 138-148, 2015. DOI:

Y. Tak, J. Park, S. J. I. A. Nam, and W. P. Letters, Mode-based analysis of resonant characteristics for near-field coupled small antennas, vol. 8, pp. 1238-1241, 2009. DOI:

T. Ishizaki, T. Komori, T. Ishida, and I. J. I. E. E. Awai, Comparative study of coil resonators for wireless power transfer system in terms of transfer loss, vol. 7, no. 11, pp. 785-790, 2010. DOI:

J. Wang, M. Hu, C. Cai, Z. Lin, L. Li, and Z. J. A. A. Fang, Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling, vol. 8, no. 5, p. 055004, 2018. DOI:

J. A. A. A. Triviño-Cabrera, Emerging Capabilities and Applications of Wireless Power Transfer, presented at the IGI Global, 2018. DOI:

A. Kumar, S. Mirabbasi, and M. Chiao, Resonance-based wireless power delivery for implantable devices, in 2009 IEEE Biomedical Circuits and Systems Conference, 2009, pp. 25-28: IEEE. DOI:

M. Kiani and M. Ghovanloo, Pulse delay modulation (PDM) a new wideband data transmission method to implantable medical devices in presence of a power link, in 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2012, pp. 256-259: IEEE. DOI:

Y.-F. Cheng, X. Ding, W. Shao, and C. J. I. A. Liao, A high-gain sparse phased array with wide-angle scanning performance and low sidelobe levels, vol. 7, pp. 31151-31158, 2019. DOI:

G. X. Liu, Q. Qin, Q. H. J. I. J. o. A. Zhang, and Propagation, Linear Array Synthesis for Wireless Power Transmission Based on Brain Storm Optimization Algorithm, vol. 2021, 2021. DOI:

E. O. Owoola, K. Xia, T. Wang, A. Umar, and R. G. J. I. A. Akindele, Pattern Synthesis of Uniform and Sparse Linear Antenna Array Using Mayfly Algorithm, 2021. DOI:

S. U. Rahman, Q. Cao, M. M. Ahmed, H. J. J. o. M. Khalil, Optoelectronics, and E. Applications, Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO, vol. 16, pp. 577-591, 2017. DOI:

G. Sun et al., Power-pattern synthesis for energy beamforming in wireless power transmission, vol. 30, no. 7, pp. 2327-2342, 2018. DOI:

N. Takabayashi, N. Shinohara, and T. Fujiwara, Array pattern synthesis of flat-topped beam for microwave power transfer system at volcanoes, in 2018 IEEE Wireless Power Transfer Conference (WPTC), 2018, pp. 1-4: IEEE. DOI:

C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2015.

S. J. Orfanidis, Electromagnetic waves and antennas, 2002.

S. Adekola and V. Adewuyi, On the electromagnetic characteristics of dipole antennas at MF/HF/VHF/UHF, in 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 2017, pp. 76-85: IEEE. DOI:

V. Adewuyi, T. Erinosho, and S. Adekola, Characteristics of a single element dipole and array of dipoles at frequencies of selected TV stations in Nigeria, in 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 2017, pp. 289-299: IEEE. DOI:

K. P. J. I. J. o. A. E. R. Dutta and Science, Study of Broadside Linear Array Antenna with Different Spacing and Number of Elements, vol. 4, no. 5, p. 237181, 2017. DOI:

P. Saxena, A. J. I. J. o. A. Kothari, and Propagation, Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm, vol. 2016, 2016. DOI:

D. L. B. Ninu Sathianathan and J. G. , Design and Analysis of Symmetric and Asymmetric Staircase Patch Antenna, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), pp. 72-78, 2017.

Y. Huang, Antennas: from theory to practice. John Wiley & Sons, 2021.

H. Gangadhar, Radiation Pattern for Broad Side Array and End Fire Array Antennas, International Journal of New Technologies in Science and Engineering, vol. 5(5), pp. 97–105., 2018.

How to Cite
Adewuyi, V., Milembolo Miantezila, J., & Owoola, E. (2022). Design Analysis of Array of Dipole Transmitters for Wireless Power Transfer. EMITTER International Journal of Engineering Technology, 10(1), 83-101.