Analysis of control factors and surface integrity during wire-EDM of Inconel 718 alloy using T-GRA approach

  • Md Ehsan Asgar Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
  • Ajay Kumar Singh Singholi Department of Mechanical and Automation Engineering, G.B. Pant Government Engineering College, New Delhi, India
Keywords: Wire-EDM, Inconel 718, ANOVA, T-GRA, Scanning Electron Microscopy


In today’s competitive modern manufacturing sectors, there is a vital need of utter precision and rigorous processing using various manufacturing approaches that directly influences the cost and processing duration of mechanized materials in addition to the consistency of the finished products. Therefore, it’s essential to figure out the required output by adjusting the control factors of any machining techniques which resulted in optimal values of the desired outcome. In this study, machining evaluation and process optimization is carried out on volumetric extraction of material namely material removal rate (MRR), kerf obtained during the machining (KW) and surface roughness (SR) of Inconel 718 superalloy during CNC controlled wire- electrical discharge machining. Four controllable factors- pulse interval, wire speed, pulse duration and peak current are considered to investigate the influence on performance measures. Taguchi's L16 has been used to construct the set of experiments before physical experimental runs and most influencing factors have been evaluated using ANOVA. SEM images and EDXS analysis have been resorted to examine the morphology of Inconel 718. These findings assist in identifying the topography of the machined surface. Further, the optimum integration has been obtained for the best yield and recorded using grey relational analysis integrated with Taguchi’s technique (T-GRA). The unfamiliarity of the work is based on consideration of zinc coated thin wire electrode and Taguchi-Grey combined approach of modelling with four levels of experimental design.


Download data is not yet available.

Author Biography

Ajay Kumar Singh Singholi, Department of Mechanical and Automation Engineering, G.B. Pant Government Engineering College, New Delhi, India

Dr. Ajay Kumar Singh Singholi is a experienced Professor, Researcher, and Academician with a demonstrated history of working in the higher education industry. A skilled academic leader with more than Eighteen Years of experience in teaching and research in Advanced Manufacturing Systems, Robotics, and Mechatronic Systems. 


V. Aggarwal, S. S. Khangura, and R. K. Garg, Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology, Int. J. Adv. Manuf. Technol., vol. 79, no. 1–4, pp. 31–47, 2015, doi: 10.1007/s00170-015-6797-8. DOI:

D. Zhu, X. Zhang, and H. Ding, Tool wear characteristics in machining of nickel-based superalloys, Int. J. Mach. Tools Manuf., vol. 64, pp. 60–77, 2013, doi: 10.1016/j.ijmachtools.2012.08.001. DOI:

M. Nalbant, A. Altin, and H. Gökkaya, The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys, Mater. Des., vol. 28, no. 4, pp. 1334–1338, 2007, doi: 10.1016/j.matdes.2005.12.008. DOI:

W. Akhtar, J. Sun, P. Sun, W. Chen, and Z. Saleem, Tool wear mechanisms in the machining of Nickel based super-alloys: A review, Front. Mech. Eng., vol. 9, no. 2, pp. 106–119, 2014, doi: 10.1007/s11465-014-0301-2. DOI:

S. Pervaiz, A. Rashid, I. Deiab, and M. Nicolescu, Influence of tool materials on machinability of titanium- and nickel-based alloys: A review, Mater. Manuf. Process., vol. 29, no. 3, pp. 219–252, 2014, doi: 10.1080/10426914.2014.880460. DOI:

M. S. Hewidy, T. A. El-Taweel, and M. F. El-Safty, Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM, J. Mater. Process. Technol., vol. 169, no. 2, pp. 328–336, 2005, doi: 10.1016/j.jmatprotec.2005.04.078. DOI:

D. R. Unune and H. S. Mali, Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718, Eng. Sci. Technol. an Int. J., vol. 20, no. 1, pp. 222–231, Feb. 2017, doi: 10.1016/j.jestch.2016.06.010. DOI:

H. Payal, S. Maheshwari, and P. S. Bharti, Parametric optimization of EDM process for Inconel 825 using GRA and PCA approach, J. Inf. Optim. Sci., vol. 40, no. 2, pp. 291–307, 2019, doi: 10.1080/02522667.2019.1578090. DOI:

R. Chalisgaonkar and J. Kumar, Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CPTi) considering multiple user’s preferences, Eng. Sci. Technol. an Int. J., vol. 18, no. 2, pp. 125–134, 2015, doi: 10.1016/j.jestch.2014.10.006. DOI:

N. Sharma, R. Khanna, and R. D. Gupta, WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm, Eng. Sci. Technol. an Int. J., vol. 18, no. 2, pp. 171–177, 2015, doi: 10.1016/j.jestch.2014.11.004. DOI:

M. Ehsan Asgar and A. K. Singh Singholi, Parameter study and optimization of WEDM process: A Review, in IOP Conference Series: Materials Science and Engineering, Oct. 2018, vol. 404, no. 1, doi: 10.1088/1757-899X/404/1/012007. DOI:

L. Li, Z. Y. Li, X. T. Wei, and X. Cheng, Machining characteristics of inconel 718 by sinking-EDM and wire-EDM, Mater. Manuf. Process., vol. 30, no. 8, pp. 968–973, 2015, doi: 10.1080/10426914.2014.973579. DOI:

M. Shabgard, S. Farzaneh, and A. Gholipoor, Investigation of the surface integrity characteristics in wire electrical discharge machining of Inconel 617, J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 857–864, 2017, doi: 10.1007/s40430-016-0556-0. DOI:

L. Li, Y. B. Guo, X. T. Wei, and W. Li, Surface integrity characteristics in wire-EDM of inconel 718 at different discharge energy, Procedia CIRP, vol. 6, no. May, pp. 220–225, 2013, doi: 10.1016/j.procir.2013.03.046. DOI:

T. R. Newton, S. N. Melkote, T. R. Watkins, R. M. Trejo, and L. Reister, Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718, Mater. Sci. Eng. A, vol. 513–514, no. C, pp. 208–215, 2009, doi: 10.1016/j.msea.2009.01.061. DOI:

M. Gołąbczak, P. Maksim, P. Jacquet, A. Gołąbczak, K. Woźniak, and C. Nouveau, Investigations of geometrical structure and morphology of samples made of hard machinable materials after wire electrical discharge machining and vibro-abrasive finishing, Materwiss. Werksttech., vol. 50, no. 5, pp. 611–615, May 2019, doi: 10.1002/mawe.201800208. DOI:

M. A. Mohd Zakaria, R. I. Raja Abdullah, M. S. Kasim, and M. H. Ibrahim, Enhancing the Productivity of Wire Electrical Discharge Machining Toward Sustainable Production by using Artificial Neural Network Modelling, Emit. Int. J. Eng. Technol., vol. 7, no. 1, pp. 261–274, 2019, doi: 10.24003/emitter.v7i1.365. DOI:

F. Klocke, M. Schwade, A. Klink, and A. Kopp, EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications, Procedia Eng., vol. 19, pp. 190–195, 2011, doi: 10.1016/j.proeng.2011.11.100. DOI:

A. Mostafapor and H. Vahedi, Wire electrical discharge machining of AZ91 magnesium alloy; Investigation of effect of process input parameters on performance characteristics, Eng. Res. Express, vol. 1, no. 1, Sep. 2019, doi: 10.1088/2631-8695/ab26c8. DOI:

A. P. Markopoulos, E.-L. Papazoglou, and P. Karmiris-Obratański, Experimental Study on the Influence of Machining Conditions on the Quality of Electrical Discharge Machined Surfaces of aluminum alloy Al5052, Machines, vol. 8, no. 1, p. 12, 2020, doi: 10.3390/machines8010012. DOI:

T. Babu Rao and A. Gopala Krishna, Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC, Adv. Manuf., vol. 1, no. 3, pp. 265–275, 2013, doi: 10.1007/s40436-013-0029-y. DOI:

R. Bobbili, V. Madhu, and A. K. Gogia, Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials, Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 664–668, 2015, doi: 10.1016/j.jestch.2015.03.014. DOI:

R. Bobbili, V. Madhu, and A. K. Gogia, Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy, Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 720–726, 2015, doi: 10.1016/j.jestch.2015.05.004. DOI:

S. Banerjee, B. Panja, and S. Mitra, Effect of process parameters on machining EN 47 spring steel through WEDM, Emerg. Mater. Res., vol. 9, no. 3, pp. 628–636, 2020, doi: 10.1680/jemmr.19.00075. DOI:

S. Evran, Surface roughness and material removal rate analyses of hard copper alloy in wire electrical discharge machining, Emerg. Mater. Res., vol. 9, no. 3, pp. 730–737, 2020, doi: 10.1680/jemmr.20.00088. DOI:

G. Veda Prakash et al., Comparative study of electrical breakdown properties of deionized water and heavy water under pulsed power conditions, Rev. Sci. Instrum., vol. 87, no. 1, 2016, doi: 10.1063/1.4940420. DOI:

D. Julong, Introduction to grey systems theory, J. grey Syst. 1, pp. 1–24, 1989.

A. N. Siddiquee, Z. A. Khan, and Z. Mallick, Grey relational analysis coupled with principal component analysis for optimisation design of the process parameters in in-feed centreless cylindrical grinding, Int. J. Adv. Manuf. Technol., vol. 46, no. 9–12, pp. 983–992, 2010, doi: 10.1007/s00170-009-2159-8. DOI:

V. Kumar. S and P. Kumar. M, Optimization of cryogenic cooled EDM process parameters using grey relational analysis, J. Mech. Sci. Technol., vol. 28, no. 9, pp. 3777–3784, 2014, doi: 10.1007/s12206-014-0840-9. DOI:

V. Srivastava and P. M. Pandey, Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode, J. Manuf. Process., vol. 14, no. 3, pp. 393–402, 2012, doi: 10.1016/j.jmapro.2012.05.001. DOI:

S. Dzionk and M. S. Siemiatkowski, Studying the effect of working conditions on WEDM machining performance of super alloy inconel 617, Machines, vol. 8, no. 3, Sep. 2020, doi: 10.3390/MACHINES8030054. DOI:

K. P. Somashekhar, N. Ramachandran, and J. Mathew, Material removal characteristics of microslot (kerf) geometry in μ-WEDM on aluminum, Int. J. Adv. Manuf. Technol., vol. 51, no. 5–8, pp. 611–626, 2010, doi: 10.1007/s00170-010-2645-z. DOI:

P. C. Pandey and S. T. Jilani, Plasma channel growth and the resolidified layer in edm, Precis. Eng., vol. 8, no. 2, pp. 104–110, 1986, doi: 10.1016/0141-6359(86)90093-0. DOI:

A. Goyal, Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM) of Inconel 625 super alloy by cryogenic treated tool electrode, J. King Saud Univ. - Sci., vol. 29, no. 4, pp. 528–535, Oct. 2017, doi: 10.1016/j.jksus.2017.06.005. DOI:

T. Jadam, S. K. Sahu, S. Datta, and M. Masanta, EDM performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media, J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 8, 2019, doi: 10.1007/s40430-019-1813-9. DOI:

P. Kumar, M. Gupta, and V. Kumar, Surface integrity analysis of WEDMed specimen of Inconel 825 superalloy, Int. J. Data Netw. Sci., vol. 2, pp. 79–88, 2018, doi: 10.5267/j.ijdns.2018.8.001. DOI:

M. E. Asgar and A. K. S. Singholi, Study of the Effect of Dielectric on Performance Measure in EDM, Lect. Notes Mech. Eng., pp. 843–850, 2021, doi: 10.1007/978-981-33-4320-7_75. DOI:

P. Kumar, M. Gupta, and V. Kumar, Microstructural analysis and multi response optimization of WEDM of Inconel 825 using RSM based desirability approach, J. Mech. Behav. Mater., vol. 28, no. 1, pp. 39–61, 2019, doi: 10.1515/jmbm-2019-0006. DOI:

How to Cite
Md Ehsan Asgar, & Singholi, A. K. S. (2021). Analysis of control factors and surface integrity during wire-EDM of Inconel 718 alloy using T-GRA approach. EMITTER International Journal of Engineering Technology, 9(2), 294-312.