Mastitis Detection System in Dairy Cow Milk based on Fuzzy Inference System using Electrical Conductivity and Power of Hydrogen Sensor Value
Abstract
This study build a system for screening method to detect mastitis in dairy cow milk using Electrical Conductivity (EC) and Power of Hydrogen (pH) sensor. The value of EC and pH sensor is analyze using fuzzy logic to clarify the truth value between it. Mastitis in cows can cause loss and decrease milk production and quality in the dairy farmer industry. Currently, detecting mastitis in cow’s milk still done manually by looking at the color change of the milk and analyzing the cow behavior. This paper has designed a mastitis detection system using the Mamdani type fuzzy inference system and the final result will be displayed on an Android-based smartphone. From the test result, it was found that the system has 79.2% detection accuracy value. This system is suitable for alternative screening method that used to detect mastitis in dairy cow milk.
Downloads
References
H. Kim, Y. Min, and B. Cho, Real-time Temperature Monitoring for The Early Detection of Mastitis in Dairy Cattle: Methods and Case Researches, Computers and Electronics in Agriculture, Vol. 162, pp. 119-125, 2019. DOI: https://doi.org/10.1016/j.compag.2019.04.004
S. Nirwal, R. Pant, and N. Rai, Analysis of Milk Quality, Adulteration and Mastitis in Milk Samples Collected from Different Regions of Dehradun, International Journal of PharmTech Rresearch, Vol. 5, No. 2, pp. 359–364, 2013.
R. S. Fernando, R. B. Rindsig, and S. L. Spahr, Electrical Conductivity of Milk for Detection of Mastitis, J. Dairy Sci, Vol. 65, No. 4, pp. 659–664, 1982. DOI: https://doi.org/10.3168/jds.S0022-0302(82)82245-5
F. Shagufta, H. Eram, N. Hafsa, B. Spozhmai, L. Shanza, and L. Sidra, Determination of Mastitis by Measuring Milk Electrical Conductivity, Int. J. Adv. Res. Biol. Sci, Vol. 3, No. 10, pp. 164–171, 2016. DOI: https://doi.org/10.22192/ijarbs.2016.03.10.001
H. Batavani, R. Asri, and Naebzadeh, The Effect of Subclinical Mastitis on Milk Composition in Dairy Cows, Iran. J. Vet. Res, Vol. 8, No. 320, pp. 205–211, 2007.
E. D. Karimuribo et al., Clinical and Subclinical Mastitis in Smallholder Dairy Farms in Tanzania: Risk, Intervention and Knowledge Transfer, Prev. Vet. Med, Vol. 74, No. 1, pp. 84–98, 2006. DOI: https://doi.org/10.1016/j.prevetmed.2006.01.009
S. Shekhar et al., Association Between Somatic Cell Count, Electric Conductivity and pH in Diagnosis of Subclinical Mastitis in Crossbred Cows, Indian Journal of Veterinary Sciences & Biotechnology, Vol. 13, No. 3, 2018. DOI: https://doi.org/10.21887/ijvsbt.v13i03.10618
B. Champak, Low Cost Management Practices to Detect and Control Sub-Clinical Mastitis in Dairy Cattle, 2019.
A. Aarif et al., Metabolic Profiling of Dairy Cows Affected With Subclinical and Clinical Mastitis, Journal of Entomology and Zoology Studies, Vol. 5, No. 6, 2017.
T. J.ROSS, Fuzzy Logic With Engineering Application. Ed. 3, 2010. DOI: https://doi.org/10.1002/9781119994374
D. Cavero, K. H. Tölle, C. Buxadé, and J. Krieter, Mastitis Detection in Dairy Cows by Application of Fuzzy Logic, Livestock Science, Vol. 105, No. 1–3, pp. 207–213, 2006. DOI: https://doi.org/10.1016/j.livsci.2006.06.006
E. Kramer et al., Mastitis and Lameness Detection in Dairy Cows by Application of Fuzzy Logic, Livestock Science, Vol. 125, No. 1, 2009. DOI: https://doi.org/10.1016/j.livsci.2009.02.020
Çoşkun, Fatma Sinem, and Uğur Zülkadir, The Use of Fuzzy Logic Approach in Evaluation of Subclinic Mastitis, Selcuk Journal of Agriculture and Food Sciences, Vol. 32, No. 3, 2018. DOI: https://doi.org/10.15316/SJAFS.2018.119
Mikail, Nazire, and Ismail Keskin, Subclinical Mastitis Prediction in Dairy Cattle by Application of Fuzzy Logic, 2015.
Mammadova, M. Nazira, and Ismail Keskin, Application of Neural Network and Adaptive Neuro-fuzzy Inference System to Predict Subclinical Mastitis in Dairy Cattle, Indian Journal of Animal Research, Vol. 49, No. 5, 2015. DOI: https://doi.org/10.18805/ijar.5581
T. Fuyang et al., An Automated On-line Clinical Mastitis Detection System Using Measurement of Electrical Parameters and Milk Production Efficiency, Journal of Physics: Conference Series, Vol. 1676, No. 1, 2020. DOI: https://doi.org/10.1088/1742-6596/1676/1/012190
Gelasakis, I. Athanasios et al., Prediction of sheep milk chemical composition using milk yield, pH, electrical conductivity and refractive index, The Journal of Dairy Research, Vol. 85, No. 1, 2018. DOI: https://doi.org/10.1017/S0022029917000772
Cais-Sokolińska, Dorota et al., Analysis of Metabolic Activity of Lactic Acid Bacteria and Yeast in Model Kefirs Made from Goat’s Milk and Mixtures of Goat’s Milk with Mare’s Milk based on Changes in Electrical Conductivity and Impedance, Mljekarstvo, Vol. 67, No. 4, 2017. DOI: https://doi.org/10.15567/mljekarstvo.2017.0405
Hadef, Leyla, Brahim Hamad, and Hebib Aggad, Effect of Subclinical Mastitis on Milk Yield and Milk Composition Parameters in Dairy Camels, Acta Biologica Szegediensis, Vol. 63, No. 2, 2019. DOI: https://doi.org/10.14232/abs.2019.2.83-90
A. A. Wardana et al., Internet of Things Platform for Manage Multiple Message Queuing Telemetry Transport Broker Server, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 4, No. 3, 2019. DOI: https://doi.org/10.22219/kinetik.v4i3.841
Minarno, Agus Eko, and Aulia Arif Wardhana, Monitoring Power Meter Pada Pembangkit Listrik Tenaga Mikro Hidro Dan Pembangkit Listrik Tenaga Surya Menggunakan Arduino Ethernet Shield Dan Cloud Service, Prosiding SENTRA (Seminar Teknologi dan Rekayasa), No. 1, 2018.
Pradana, Muhammad Adna, Andrian Rakhmatsyah, and Aulia Arif Wardana, Flatbuffers Implementation on MQTT Publish/Subscribe Communication as Data Delivery Format, 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2019. DOI: https://doi.org/10.23919/EECSI48112.2019.8977050
Princy. S, Dhenakaran. S. S, Comparison of Triangular and Trapeziodal Fuzzy Membership Function, J. Comput. Sci. Eng, Vol. 2, pp. 45-61, 2016.
R. K. and D. B. DK Bagri, RK Pandey, GK Bagri, Effect of Subclinical Mastitis on Milk Composition in Lactating Cows, J. Entomol. Zool. Stud, Vol. 6, No. 5, pp. 231–236, 2018.
E. Norberg et al., Electrical Conductivity of Milk: Ability to Predict Mastitis Status, Journal of Dairy Science, Vol. 87, No. 4, 2004. DOI: https://doi.org/10.3168/jds.S0022-0302(04)73256-7
S. A. Kandeel et al., Ability of Milk pH to Predict Subclinical Mastitis and Intramammary Infection in Quarters from Lactating Dairy Cattle, Journal of Dairy Science, Vol. 102, No. 2, 2019. DOI: https://doi.org/10.3168/jds.2018-14993
Copyright (c) 2021 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.