Implementation and Integration of Fuzzy Algorithms for Descending Stair of KMEI Humanoid Robot

  • Wulandari Puspita Sari Politeknik Elektronika Negeri Surabaya, Indonesia
  • R. Sanggar Dewanto Politeknik Elektronika Negeri Surabaya, Indonesia
  • Dadet Pramadihanto Politeknik Elektronika Negeri Surabaya, Indonesia
Keywords: descending stair, humanoid robot, fuzzy logic control, zero moment point

Abstract

Locomotion of humanoid robot depends on the mechanical characteristic of the robot. Walking on descending stairs with integrated control systems for the humanoid robot is proposed. The analysis of trajectory for descending stairs is calculated by the constrains of step length stair using fuzzy algorithm. The established humanoid robot on dynamically balance on this matter of zero moment point has been pretended to be consisting of single support phase and double support phase. Walking transition from single support phase to double support phase is needed for a smooth transition cycle. To accomplish the problem, integrated motion and controller are divided into two conditions: motion working on offline planning and controller working online walking gait generation. To solve the defect during locomotion of the humanoid robot, it is directly controlled by the fuzzy logic controller. This paper verified the simulation and the experiment for descending stair of KMEI humanoid robot. 

Downloads

Download data is not yet available.

References

S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998. DOI: https://doi.org/10.1007/978-3-642-87271-6

Liu, J., Urbann, O.: Bipedal walking with dynamic balance that involves three-dimensional upper body motion, Rob. Auton. Syst. 77, 39–54, 2016. DOI: https://doi.org/10.1016/j.robot.2015.12.002

Kobayashi, T., Hasegawa, Y., Sekiyama, K., Aoyama, T., Fukuda, T, Unified bipedal gait for walking and running by dynamicsbased virtual holonomic constraint in PDAC, In: Proceedings IEEE Int. Conf. Robot. Autom., pp. 1769–1775, 2016.

Brasseur, C., Sherikov, A., Collette, C., Dimitrov, D., Wieber, P.B, A Robust linear MPC approach to online generation of 3D biped walking motion, IEEE-RAS Int. Conf. Humanoid Robot. 595–601, 2015. DOI: https://doi.org/10.1109/HUMANOIDS.2015.7363423

Shahrokhshahi, Ahmadreza, et al, Optimal Stair Climbing Pattern Generation for Humanoids Using Virtual Slope and Distributed Mass Model, Journal of Intelligent & Robotic Systems, 94.1 ,43-59, 2019.

Y.-D. Hong and K.-B. Lee, Stable Walking of Humanoid Robots Using Vertical Center of Mass and Foot Motions by an Evolutionary Optimized Central Pattern Generator, International Journal of Advanced Robotic Systems, vol. 13, no. 1, p. 27, 2016. DOI: https://doi.org/10.5772/62039

Liu, Chengju, et al, Active Balance Control of Humanoid Locomotion Based on Foot Position Compensation, Journal of Bionic Engineering, 17.1 , 134-147 , 2020. DOI: https://doi.org/10.1007/s42235-020-0011-x

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai,F.Permenter,T.Koolen,P.Marion,andR.Tedrake, Optimization-based locomotion planning, estimation, and control design for Atlas, Autonomous Robots, vol. 40, no. 3, pp. 429–455, 2016. DOI: https://doi.org/10.1007/s10514-015-9479-3

J. Carpentier, S. Tonneau, M. Naveau, and O. Stasse, A Versatile and Efficient Pattern Generator for Generalized Legged Locomotion, IEEE International Conference on Robotics and Automation, no. 3, pp. 3555– 3561, 2016.

Morisawa, M. et al, Pattern generation of biped walking constrained on parametric surface. Proc. IEEE Int. Conf. Robot. Autom. 2005, 2405–2410, 2005.

Zhang tong, Research on walking control and motion planning for humanoid robot, Guangzhou: SOUTH CHINA UNIVERSITY OF TECHNOLOGY, 22-23, 2010.

Grizzle J.W., Chevallereau C., Ames A.D., Sinnet R.W, 3D bipedal robotic walking: models, feedback control, and open problems. NOLCOS, Bologna, (Italy), 2010. DOI: https://doi.org/10.3182/20100901-3-IT-2016.00302

Zachariah, Sam K., and Thomas Kurian, Hybrid-state driven autonomous control for planar bipedal locomotion over randomly sloped non-uniform stairs, Robotics and Autonomous systems 97, 18-39, 2017. DOI: https://doi.org/10.1016/j.robot.2017.08.003

Rajendra, Rega, and Dilip Kumar Pratihar, Analysis of double support phase of biped robot and multi-objective optimization using genetic algorithm and particle swarm optimization algorithm. Sadhana 40.2 , 549-575, 2015. DOI: https://doi.org/10.1007/s12046-014-0327-5

Ferrari, Paolo, et al, An Integrated Motion Planner/Controller for Humanoid Robots on Uneven Ground. 2019 18th European Control Conference (ECC). IEEE, 2019.

Zhu, Chi, et al, Biped walking with variable ZMP, frictional constraint, and inverted pendulum model. 2004 IEEE International Conference on Robotics and Biomimetics. IEEE, 2004.

Vundavilli, Pandu Ranga, Sambit Kumar Sahu, and Dilip Kumar Pratihar, Dynamically balanced ascending and descending gaits of a two-legged robot. International Journal of Humanoid Robotics 4.04 , 717-751, 2007. DOI: https://doi.org/10.1142/S0219843607001266

J. Englsberger, C. Ott, and A. Albu-Schaffer, Three-dimensional

bipedal walking control based on divergent component of motion,

IEEE Transactions on Robotics, vol. 31, no. 2, pp. 355–368, 2015. DOI: https://doi.org/10.1109/TRO.2015.2405592

Wensing, Patrick M., et al, Optimizing foot centers of pressure through force distribution in a humanoid robot. International Journal of Humanoid Robotics 10.03, 1350027, 2013.

Lin J, Chang J, Lyu S M, Wang S W and Lin Y W, Locomotion control of a biped robot for stair-climbing by fuzzy stabilization tuning approach. Proc. of IEEE Multi-Conference on Systems and Control. Yokohama, Japan, September 8–10, pp. 1590–1595, 2010.

Park J H, Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots[J], Fuzzy Sets System, 189-203, 2003. DOI: https://doi.org/10.1016/S0165-0114(02)00237-3

Li, Tzuu-Hseng S., et al, Stair-climbing control of humanoid robot using force and accelerometer sensors, SICE Annual Conference 2007. IEEE, 2007. DOI: https://doi.org/10.1109/SICE.2007.4421336

Wang, Pengfei, et al, A simple control algorithm for controlling biped dynamic walking with stopping ability based on the footed inverted pendulum model, Advances in Mechanical Engineering 8.9 , 1687814016670283, 2016. DOI: https://doi.org/10.1177/1687814016670283

Shahrokhshahi, Ahmadreza, et al, Optimal Stair Climbing Pattern Generation for Humanoids Using Virtual Slope and Distributed Mass Model. Journal of Intelligent & Robotic Systems 94.1 , 43-59, 2019. DOI: https://doi.org/10.1007/s10846-018-0959-5

Sheng, Bi, et al, Gait Planning of Humanoid Robots Walking on Stairs, FIRA RoboWorld Congress. Springer, Berlin, Heidelberg, 2011.

Published
2020-12-02
How to Cite
Puspita Sari, W., R. Sanggar Dewanto, & Dadet Pramadihanto. (2020). Implementation and Integration of Fuzzy Algorithms for Descending Stair of KMEI Humanoid Robot. EMITTER International Journal of Engineering Technology, 8(2), 372-388. https://doi.org/10.24003/emitter.v8i2.535
Section
Articles