Implementation of Oxymetry Sensors for Cardiovascular Load Monitoring When Physical Exercise

  • Dhodit Rengga Tisna Politeknik Elektronika Negeri Surabaya, Indonesia
  • M. Udin Harun Al Rasyid Politeknik Elektronika Negeri Surabaya, Indonesia
  • Sritrusta Sukaridhoto Politeknik Elektronika Negeri Surabaya, Indonesia
Keywords: monitoring, heart rate, oxygen saturation, CVL, overtraining


The performance condition of an athlete must always be maintained, one way to maintain that performance is by training. Each individual has different abilities and physiological responses in receiving the portion of the exercise. Physical exercise that exceeds the body's ability can worsen the condition of the athlete itself which can result in excessive fatigue (overtraining) or can even result in injury. Therefore a system is needed to monitor the condition of the physiological response when given the intensity of the training load so that the portion of the training provided provides positive benefits for the athlete. This system was developed using an oxymetry sensor, microcontroller and wifi module ESP8266.  This system is used to collect heart rate and oxygen saturation data, then with the existing formula the heart rate value is converted to a CVL (Cardiovascular Load) value to determine the level of fatigue in athletes when given the intensity of the training load. By using a web-based application, measurement data is displayed in realtime to make it easier to see the results of monitoring. From the experimental results the system can monitor changes in the physiological condition of the athlete when given the intensity of the training load. Finally, the developed system can collect athlete's physiological data, and can store the data in a database and display it in a web application.


Download data is not yet available.


S. Kodama et al., Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis, JAMA - J. Am. Med. Assoc., vol. 301, no. 19, pp. 2024–2035, 2009.

T. W. Calvert, E. W. Banister, M. V. Savage, and T. Bach, A Systems Model of the Effects of Training On Physical Performance, Aust J Sport. Med, vol. SMC-6, no. 2, pp. 94–102, 1976. DOI:

R. Pind and J. Mäestu, Monitoring training load: necessity, methods and applications, Acta Kinesiol. Univ. Tartu., vol. 23, p. 7, 2018. DOI:

B. T. Hulin, T. J. Gabbett, D. W. Lawson, P. Caputi, and J. A. Sampson, The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players, Br. J. Sports Med., vol. 50, no. 4, pp. 231–236, 2016. DOI:

R. H. Morton, Modelling training and overtraining, J. Sports Sci., vol. 15, no. 3, pp. 335–340, 1997. DOI:

C. R. Bellenger, R. L. Thomson, P. R. C. Howe, L. Karavirta, and J. D. Buckley, Monitoring athletic training status using the maximal rate of heart rate increase, J. Sci. Med. Sport, vol. 19, no. 7, pp. 590–595, 2016. DOI:

J. G. Dong, The role of heart rate variability in sports physiology (Review), Exp. Ther. Med., vol. 11, no. 5, pp. 1531–1536, 2016.

J. E. Wingo, M. S. Ganio, and K. J. Cureton, Cardiovascular drift during heat stress: Implications for exercise prescription, Exerc. Sport Sci. Rev., vol. 40, no. 2, pp. 88–94, 2012. DOI:

M. Gleeson, Temperature regulation during exercise: Directions—1983, Int. J. Sports Med., vol. 19, no. 2, pp. S96–S99, 1998. DOI:

N. S. A. Zulkifli, F. K. Che Harun, and N. S. Azahar, XBee wireless sensor networks for Heart Rate Monitoring in sport training, 2012 Int. Conf. Biomed. Eng. ICoBE 2012, no. in C, pp. 441–444, 2012. DOI:

K. Malhi and S. C. Mukhopadhyay, A Zigbee-Based Wearable Physiological Parameters Monitoring SystemA Zigbee-Based Wearable Physiological Parameters Monitoring System, IEEE Sens. J., vol. 45, no. 8, pp. 799–804, 2012.

J. Segura-Garcia, M. Garcia-Pineda, M. Tamarit-Tronch, R. M. Cibrian, and R. Salvador-Palmer, Cost-effective eHealth system based on a multi-sensor system-on-chip platform and data fusion in cloud for sport activity monitoring, Electron., vol. 7, no. 9, pp. 1–13, 2018. DOI:

Z. Ovadia-blechman, O. Gino, L. Dandeker, and N. Sheffer, The Feasibility of Flat , Portable and Wireless Device for Non-Invasive Peripheral Oxygenation Measurement over the Entire Body, J. Biomed. Sci. Eng., no. March, pp. 147–159, 2016. DOI:

A. Ahmed, A. A. Lukman, A. James, O. O. Mikail, B. U. Umar, and E. Samuel, Human Vital Physiological Parameters Monitoring: A Wireless Body Area Technology Based Internet of Things, J. Teknol. dan Sist. Komput., vol. 6, no. 3, p. 115, 2018. DOI:

S. T. Chen, S. S. Lin, C. W. Lan, and H. Y. Hsu, Design and development of awearable device for heat stroke detection, Sensors (Switzerland), vol. 18, no. 1, 2018. DOI:

L. Djaoui, M. Haddad, K. Chamari, and A. Dellal, Monitoring training load and fatigue in soccer players with physiological markers, Physiol. Behav., vol. 181, no. September, pp. 86–94, 2017. DOI:

S. L. Halson, Monitoring Training Load to Understand Fatigue in Athletes, vol. 44, 2014. DOI:

Subono, M. U. H. Al Rasyid, and I. G. P. Astawa, Implementation of Energy Efficiency Based on Time Scheduling to Improve Network Lifetime in Wireless Body Area Network (WBAN), Emit. Int. J. Eng. Technol., vol. 3, no. 2, pp. 28–42, 2016. DOI:

R. T. Li, S. R. Kling, M. J. Salata, S. A. Cupp, J. Sheehan, and J. E. Voos, Wearable Performance Devices in Sports Medicine, Sports Health, vol. 8, no. 1, pp. 74–78, 2016. DOI:

Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, Monitoring of Vital Signs with Flexible and Wearable Medical Devices, Adv. Mater., vol. 28, no. 22, pp. 4373–4395, 2016.

D. Dias and J. P. S. Cunha, Wearable health devices—vital sign monitoring, systems and technologies, Sensors (Switzerland), vol. 18, no. 8, 2018. DOI:

D. Chong and N. Zhu, Human heat acclimatization in extremely hot environments: A review, Procedia Eng., vol. 205, pp. 248–253, 2017. DOI:

J. Y. Khan and M. R. Yuce, Wireless Body Area Network(WBAN) for Medical Applications, J. Med. Syst., vol. 36, no. 3, pp. 1441–1457, 2012.

L. E. Armstrong, D. J. Casa, M. Millard-Stafford, D. S. Moran, S. W. Pyne, and W. O. Roberts, Exertional heat illness during training and competition, Med. Sci. Sports Exerc., vol. 39, no. 3, pp. 556–572, 2007. DOI:

D. Dubeau, A. Kolus, D. Imbeau, and P. Dub, Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system, vol. 54, pp. 158–168, 2016. DOI:

R. P. Garrido-Chamorro, M. González-Lorenzo, J. Sirvent-Belando, C. Blasco-Lafarga, and E. Roche, Desaturation patterns detected by oximetry in a large population of athletes, Res. Q. Exerc. Sport, vol. 80, no. 2, pp. 241–248, 2009. DOI:

D. P. Restuputri, A. K. Pangesti, and A. K. Garside, The measurement of Physical Workload and Mental Workload Level of Medical Personnel, J. Tek. Ind., vol. 20, no. 1, p. 34, 2019. DOI:

How to Cite
Tisna, D. R., Al Rasyid, M. U. H., & Sukaridhoto, S. (2020). Implementation of Oxymetry Sensors for Cardiovascular Load Monitoring When Physical Exercise. EMITTER International Journal of Engineering Technology, 8(1), 178-199.