Analysis of Energy Consumption Using Sequential to Better Signal (SBS) Scheme for Green Celluler Network

  • Haniah Mahmudah PENS
  • Okkie Puspitorini Politeknik Elektronika Negeri Surabaya
  • Ari Wijayanti Politeknik Elektronika Negeri Surabaya
  • Nur Adi Siswandari Politeknik Elektronika Negeri Surabaya
  • Yetik Dwi Kusumaningrum Politeknik Elektronika Negeri Surabaya
Keywords: Energy Consumption, SINR, Sequential to Better Signal (SBS), Green Cellular Network


Over time, cellular communication technology developed significantly from year to year. This is due to increasing the number of users and the higher needed. To overcome this problem, many providers increase the number of new base station installations to fill up the customer's needed. The increase number of base stations does not take into account the amount of power consumption produced, where in the cellular network Base Stations (BS) are the most dominant energy consuming equipment estimated at 60% - 80% of the total energy consumption in the cellular industry. In addition, energy waste often occurs in the BS where the emission power will always remain even if the number of users is small. Power consumption and energy savings are important issues at this time because they will affect CO2 emissions in the air. This paper proposes to save energy consumption from BS by turning off BS (sleep mode) if the number of users is small and distributed to other BS (neighboring BS) which is called cell zooming technique. The cell size can zoom out when the load traffic is high and zoom in when the load traffic is low. To determine the central BS and neighboring BS, a sequential to better signal (SBS) scheme is used where this scheme sorts neighboring BS based on the SINR value received (user). The results of this research, base station can be able to save energy 29.12% and reduce CO2 emission around 3580 kg/year.  It means saving energy consumption which is also reducing air pollution occurs and this term can be named as green cellular network. 


Download data is not yet available.


D. Margot, T. Emmeric, J. Wout, et al. , Modelling and optimization of power consumption in wireless access networks , Computer Communication, vol. 34, pp. 2036-2046, Apr. 2011.

B. Rengarajan, G. Rizzo, and M.A. Marsan, Bounds on QoS-constrained energy savings in cellular access networks with sleep modes, in Proc. International Teletraffic Congress (ITC), 2011, pp. 47-54.

J. T Louhi, Energ Efficiency of modern cellular base stations, 29th International Telecommunications Energy Conference (INTELEC), 2007, pp.475-476, Sept 30 2007-oct. 4 2007. DOI:

H. Karl, An overview of energy-efficiency techniques for mobile communication systems, Technical Report, Telecommunication networks Group, Technical University Berlin, Sept. 2003.

Tun Cho Khin, Kunavut Kunagor, An Overview of Cell Zooming Algorithms and Power Saving Capabilities in Wireless Networks , KMUTNB Int J Appl Sci Technol, Vol.7, No.3, pp. 1-13, 2014. DOI:

Zhiseng Niu, Zexi Tsinghua, Yiqun Wu, Jie Gong, Cell Zooming for Cost-Efficient Green Cellular Networks, IEEE Communication Magazine, 2010.

Md. Farhad Hossain, Traffic-Driven Energy Efficient Operational Mechanisms in Cellular Access Networks , Thesis, University of Sidney, 2014.

Hani’ah M, Rosabella I. Y., Okkie P, Nur Adi , Ari W Performance Analysis of Cell Zooming Based Centralized Algorithm for Energy Efficient in Surabaya, EMITTER International Journal of Engineering Technology, Vol. 4, No. 2, 2016. DOI:

Courtesy of Telkomsel Data 2018.

Path loss models. S-72.333 Physical layer methods in wireless communication systems, Helsinki University of Technology, Nov. 2004.

ITU R-Recommendation M.1390, Methodology for the calculation of IMT-2000 terrestrial spectrum requirements, International Telecommunication Union, 1999.

M. Deruyck, W. Joseph, L. Martens, Power Consumption Model for Macrocell and Microcell Base Stations, Eur. Trans. Telecomms., pp. 1-14, Jun. 2011.

Lamiaa Abdallah, Tarek El-Shennawy, Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications, Journal of Engineering Hindawi , Volume 2013, Article ID 84505, DOI:

Carmine Lubritto Telecommunication Power System: Energy Saving, Renewable Sources and Environmental Monitoring, Trends in Telecommunications Technologies, ISBN 978-953-307-072-8 pp146-164, 01, March, 2010.

How to Cite
Mahmudah, H., Puspitorini, O., Wijayanti, A., Siswandari, N. A., & Kusumaningrum, Y. D. (2020). Analysis of Energy Consumption Using Sequential to Better Signal (SBS) Scheme for Green Celluler Network. EMITTER International Journal of Engineering Technology, 8(1), 221-239.