Frequency Controlled Noise Cancellation for Audio and Hearing Purposes
Abstract
Methods for hearing aids sought to compensate for loss in hearing by amplifying signals of interest in the audio band. In real-world, audio signals are prone to outdoor noise which can be destructive for hearing aid. Eliminating interfering noise at high speed and low power consumption became a target for recent researches. Modern hearing compensation technologies use digital signal processing which requires minimum implementation costs to reduce power consumption, as well as avoiding delay in real time processing. In this paper, frequency controlled noise cancellation (FCNC) strategy for hearing aid and audio communication is developed with low complexity and least time delay. The contribution of the current work is made by offering a method that is capable of removing inherent distortion due filter-bank insertion and assigning adaptive filtering to a particular sub-band to remove external noise. The performance of the proposed FCNC was examined under frequency-limited noise, which corrupts particular parts of the audio spectrum. Results showed that the FCNC renders noise-immune audio signals with minimal number of computations and least delay. Mean square error (MSE) plots of the proposed FCNC method reached below -30 dB compared to -25 dB using conventional sub-band method and to -10 dB using standard full-band noise canceller. The proposed FCNC approach gave the lowest number of computations compared to other methods with a total of 346 computations per sample compared to 860 and 512 by conventional sub-band and full-band methods respectively. The time delay using FCNC is the least compared to the other methods.
Downloads
References
N. S. Jensen, O. Hau, J. B. B. Nielsen, S. V. Legarth, Perceptual Effects of Adjusting Hearing-Aid Gain by Means of a Machine-Learning Approach Based on Individual User Preference, Trends in Hearing Vol. 23: pp.1–23. 2019. DOI: https://doi.org/10.1177/2331216519847413
K. A. Lee, W. S. Gan, S. M. Kuo, Subband Adaptive Filtering: Theory and Implementation, John Wiley & Sons Ltd (Wiltshire), pp.99-129. 2009. DOI: https://doi.org/10.1002/9780470745977
M. Djendi, A. Sayoud, A New Dual Subband Fast NLMS Adaptive Filtering Algorithm for Blind Speech Quality Enhancement and Acoustic Noise Reduction, Int. Journal of Speech Technology, Vol. 22, No.2, pp. 391-406. 2019. DOI: https://doi.org/10.1007/s10772-019-09614-9
S. G. Kim, C.D. Yoo, T.Q. Nguyen, Alias-Free Subband Adaptive Filtering With Critical Sampling, IEEE Transactions on Signal Processing, Vol. 56, No. 5, pp.1894-1904. 2008. DOI: https://doi.org/10.1109/TSP.2007.912262
H. Choiand, H. D. Bae, Subband Affine Projection Algorithm for Acoustic Echo Cancellation System, EURASIP Journal on Advances in Signal Processing, Vol. 2007, Article ID 75621, doi:10.1155/2007/75621. 2007. DOI: https://doi.org/10.1155/2007/75621
K. A. Lee, W. S. Gan, Improving Convergence of the NLMS Algorithm Using Constrained Subband Updates, IEEE Signal Processing Letters, Vol. 11, No.9, pp. 736-239. 2004. DOI: https://doi.org/10.1109/LSP.2004.833445
M. R. Petraglia, P. Batalheiro, Non-Uniform Subband Adaptive Filtering With Critical Sampling, IEEE Transactions on Signal Processing, Vol. 56, No. 2, pp.565-575, 2008. DOI: https://doi.org/10.1109/TSP.2007.906739
C. Schüldt, F. Lindstrom, I. Claesson, A Low- Complexity Delayless Selective Subband Adaptive Filtering Algorithm, IEEE Transactions on Signal Processing, Vol. 12, pp.5840-5850, 2008.
A. O. A. Noor, I. H. Al-Hussaini, S. A. Samad, Adaptive Cancellation of Localised Environmental Noise, Jurnal Kejuruteraan, Vol. 30, No. 2, pp.179-186, 2018. DOI: https://doi.org/10.17576/jkukm-2018-30(2)-07
S. Haykin, Adaptive Filter Theory. Prentice Hall (New Jersey), Ed.5, pp. 160-187, 2013.
R. M. Ramli, A. O. A. Noor, S. A. Samad, Noise Cancellation Using Selectable Adaptive Algorithm for Speech in Variable Noise Environment, International Journal Speech Technology, Vol. 20, No. 3, pp. 535-542, 2017. DOI: https://doi.org/10.1007/s10772-017-9425-1
P. S .R. Diniz, Adaptive IIR Filters. In: Adaptive Filtering. Springer (Boston MA), pp. 411-466, 2013 DOI: https://doi.org/10.1007/978-1-4614-4106-9_10
M. Radenkovic, T. Bose, Adaptive IIR Filtering of Non Stationary Signals, Elsevier Signal Processing, Vol. 81(2001), pp. 183-195. 2001.
Y. Yu, L. Lu, Z. W. Zheng, Y. Zakharov, R. C. de Lamare, Robust DCD-Based Recursive Adaptive Algorithms. IEEE Transactions on Circuits and Systems II. DOI: 10.1109/TCSII.2019.2936407, 2019. DOI: https://doi.org/10.1109/TCSII.2019.2936407
B. K. Das, M. Chakraborty, Improved l 0 -RLS adaptive filter. Electronics Letters, Vol. 53. No 25, pp.1650. DOI: 10.1049/el.2017.3441, 2017. DOI: https://doi.org/10.1049/el.2017.3441
M. Narasimha, Block Adaptive Filter With Time-Domain Update Using Three Transforms, IEEE Signal Processing Letters, Vol. 14, No.1, Jan 2007, pp. 51-53, 2007. DOI: https://doi.org/10.1109/LSP.2006.881521
J. Liu, S.L. Grant. Proportionate Adaptive Filtering for Block-Sparse System Identification, IEEE/ACM Transactions on Audio, Speech and Language. Volume 24 Issue 4. Pp. 623-630, 2016. DOI: https://doi.org/10.1109/TASLP.2015.2499602
S. J. Schlecht, Frequency-Dependent Schroeder Allpass Filters, Journal of Applied Sciences (MDPI), 10, 187, pp1-11, 2019. DOI: https://doi.org/10.3390/app10010187
K. D. Rao and M.N. Swamy, Digital Signal Processing. Springer Nature Singapore Pte Ltd. Chapter 11, pp693, 2018. DOI: https://doi.org/10.1007/978-981-10-8081-4
G. Blanchet and M. Charbit, Digital Signal and Image Processing using MATLAB, ISTE USA, pp114-150, 2006. DOI: https://doi.org/10.1002/9780470612385
L. Milić, Multirate Filtering for Digital Signal Processing: MATLAB Applications, Hershey, New York, pp40-45, 2009. DOI: https://doi.org/10.4018/978-1-60566-178-0
J. Agnew, J. M. Thornton, Just Noticeable and Objectionable Group Delays in Digital Hearing Aids, Journal of the American Academy of Audiology, Vol.11, No. 6, pp330-336, 2000.
K. Tsuneyama, Y. Kiyoki, A Time-Series Phrase Correlation Computing System With Acoustic Signal Processing For Music Media Creation, EMITTER International Journal of Engineering Technology, Vol. 5, No. 1, pp1-15, 2017. DOI: https://doi.org/10.24003/emitter.v5i1.188
Copyright (c) 2020 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.