PID Controller Design of Nonlinear System using a New Modified Particle Swarm Optimization with Time-Varying Constriction Coefficient

Alrijadjis ., Shenglin Mu, Shota Nakashima, Kanya Tanaka

Abstract


The proportional integral derivative (PID) controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO) is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR) process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE.

Keywords: PID controller, Particle Swarm Optimization (PSO),constriction factor, nonlinear system.


Full Text:

PDF


DOI: 10.24003/emitter.v2i2.28

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 EMITTER International Journal of Engineering Technology

EMITTER Journal Editorial Office

 

Politeknik Elektronika Negeri Surabaya

Jl. Raya ITS - Kampus PENS Sukolilo Surabaya 60111, INDONESIA

emitter@pens.ac.id   http://emitter.pens.ac.id   Telp : +62 31 594 7280   Fax : +62 31 594 6114