A Prediction System of Dengue Fever Using Monte Carlo Method

  • Mochammad Choirur Roziqin Politeknik Elektronika Negeri Surabaya
  • Achmad Basuki Politeknik Elektronika Negeri Surabaya
  • Tri Harsono Politeknik Elektronika Negeri Surabaya


Dengue fever is an acute disease that clinically can cause death because there is no prediction system to estimate dengue fever cases so it resulted in the growing of dengue fever cases every year. Original data gathering in Jember area that uses technique of partial data gathering has caused data missing. To make this secondary data can be processed in prediction stage there is need to conduct missing imputation by using Monte Carlo method with four different randomization method, followed by data normality test with chi-square, then continued to regression stage. We use MSE (Mean Square Error) to measure prediction error. The smallest MSE result of regression is the best regression model for prediction.


Download data is not yet available.


Buletin Jendela Epidemiologi. (2010). Demam Berdarah Dengue (Volume 2). Indonesia: Kementerian Kesehatan.

Wahyu, Sri Yulianto, Identifikasi Missing Value dan Outlier pada Proses Cleansing Data, 2014, Salatiga.

Han, Jiawei, Micheline Kamber, Jian Pei, Data Mining : Concept and Techniques, 2011 USA : Morgan Kaufmann.

Nasoetion, Forecasting of Native Chicken Population in Central Java by Using Trend Least Square Model, 2009 National Seminar Awakening Ranch, Semarang, 20, 2009.

Achmad Basuki, Miftahul Huda, Tri Budi. Model and Simulation, 2014, IPTAQ Mulia Media, Jakarta.

Addie Andromeda Evans, Maximum Likelihood Estimation, 2008, San Fransisco State University.

Jiaqi Ge, Yuni Xia and Jian Wang, A Na¨ıve Bayesian Classifier in Categorical Uncertain Data Streams, Indiana University, Purdue University Indianapolis and Nanjing University.

Gintautas Dzemyda, Leonidas Sakalauskas, Large-Scale Data Analysis Using Heuristic Methods, INFORMATICA, 2011, Vol. 22, No. 1, 1–10.

H. Abdul Rahiml , F. Ibrahim, A Novel Prediction System In Dengue Fever Using Narmax Model, International Conference on Control, Automation and Systems 2007 Oct. 17-20, 2007 in COEX, Seoul, Korea.

Napa Rachata, Phasit Charoenkwan, Thongchai Yooyativong, Kosin Chamnongthal, Chidchanok Lursinsap, and Kohji Higuchi, Automatic Prediction System of Dengue Haemorrhagic-Fever Outbreak Risk by Using Entropy and Artificial Neural Network, International Symposium on Communications and Information Technologies (ISCIT 2008).

Dia Bitari Mei Yuana, I Putu Dody Lesmana, Slamet Yulianto, Model Potential Spread of Disease Fever Dengue in Jember Method Using Fuzzy, Prosiding Conference on Smart-Green Technology in Electrical and Information Systems. Bali, 14-15 November 2013.

Imam Taufik, and Mada Sanjaya WS,Monte Carlo Simulation in Predicting Epidemics of Dengue dengeu in the district of Sukabumi Citamiang, Physics Conference Proceedings 1 2012, ISSN 2301-5284.

A. E. Maxwell. Analysing Qualitative Data. 4th Edition. Chapman and Hall Ltd., 1971. Library of Congress Catalog Card Number 75–10907.

How to Cite
Roziqin, M. C., Basuki, A., & Harsono, T. (2016). A Prediction System of Dengue Fever Using Monte Carlo Method. EMITTER International Journal of Engineering Technology, 4(1), 16-30. https://doi.org/10.24003/emitter.v4i1.111