
EMITTER International Journal of Engineering Technology
Vol. 13, No. 1, June 2025, pp. 139~155

DOI : 10.24003/emitter.v13i1.949

Copyright © 2025 EMITTER International Journal of Engineering Technology ‐ Published by PENS

139

A Detailed Set of Ideas for Designing a Quantum Computing
Framework Based on Smart Contracts Configured Using

Foundry and Qiskit

Alexandru-Gabriel Tudorache

Department of Computer Science and Engineering, Gheorghe Asachi Technical
University of Iasi, Bd. Dimitrie Mangeron, Iasi, Romania

Corresponding Author: alexandru-gabriel.tudorache@academic.tuiasi.ro

Received January 30, 2025; Revised March 22, 2025; Accepted June 2, 2025

Abstract

The purpose of this paper is to describe a new system design for
integrating quantum computing algorithms (and their results) into a
blockchain network. In this selected context, we can use, create and
upload smart contracts (SCs) that allow users to perform various
quantum computations, by using the corresponding circuits. We are
therefore proposing a system that uses gas fees in the blockchain
context, in order to offer access to certain circuits and their
simulation results; the system also allows for the previously analyzed
circuits to become publicly available, through SCs – this can act like a
quantum circuit encyclopedia. Most users in the first generation will
have to pay, in addition to the normal transaction fees (gas) required
to call the SC methods, a small development fee for the contract
creation for most of the tasks; after a certain number of SCs, enough
configurations and results will become accessible to everyone, and
only custom, unprocessed circuits will require the development fee.
Optionally, a dedicated blockchain network (similar to one of the
existing test ones) can also be designed, with contracts that have
access to real quantum hardware; its owners can decide (if
necessary) the value of the virtual coin in connection to a real-world
currency. For our experiments, we selected the Solidity language for
the development of SCs, and Python for the development and
simulation of quantum circuits, with the help of the Qiskit
framework, an open-source library for quantum processing
developed by IBM.

Keywords: quantum computing, blockchain, smart contract, Solidity,
decentralized app.

1. INTRODUCTION
Two of the most innovative research areas that have emerged over the

last couple of years are the quantum research area, especially thanks to
recent developments of quantum processors, and blockchain.

We can view blockchain as a way of storing and interacting with data in
a decentralized and secure manner, using a public ledger (see [1] for details).

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

140

The advantage, in terms of security, comes from the fact that data are split
into multiple blocks, which, after being added to the blockchain, can no
longer be changed. Blockchain does not come down just to virtual currency
(cryptocurrency) as means of potential investment, as massively advertised –
it can be used in the context of decentralized trust, as there is no main entity
that other parties need to interact with; it can also be used as a voting
mechanism. The consensus algorithms of a blockchain network guarantee
that all participants adhere to the decided rules. There are multiple
classifications for blockchain types, but they can generally be grouped into
three categories (as presented in [1]): public blockchains – there are no
limitations for users that want to participate, private blockchain – the
participants are selected by the leading organization, and federated or
consortium blockchains – a given number of nodes are in charge of the
consensus process.

Cyberattacks and blockchain security in general are other concepts that
need to be considered when dealing with blockchain networks. Hackers have
managed to manipulate a certain number of vulnerabilities (see [2] for
details), and some of these methods are presented as follows: one of them is
represented by phishing attacks – these are attempts to trick users into
giving their credentials. In routing attacks, the hackers intercept the data
transfers from sent blocks; sybil attacks take advantage of the idea to flood
the system, with hackers developing false identities, and in 51% attacks, if a
large group of users/miners control more than half the system, then they are
able to manipulate the ledger.

2. RELATED WORKS

When it comes to advances in the blockchain research area, we mention
paper [3], which shows the general concepts and analyzes the applied fields
and research themes of blockchain; it also presents an overview of the three
generations of blockchain, while also offering an insight into the potential
future research areas of blockchain technology and benefits, seen from a
business point of view. For the quantum resistance in blockchain networks,
paper [4] analyzes the impact that quantum technology will have on existing
cryptographic algorithms. It is focused more on post-quantum protocols and
techniques, post-quantum blockchain networks and the migration towards a
quantum-resistant cryptographic universe (with post-quantum certificates,
signing using post-quantum keys and verification of post-quantum
signatures).

There are also papers that present various approaches to the world of
Internet of Things (IoT); in paper [5], the authors present the security of IoT
solutions from different research papers, and propose a classification based
on the type of solution: blockchain, machine learning, cryptography and
quantum computing. For blockchain solutions, the authors consider multiple
parameters: the technique (such as Proof of Work, or a certain cryptographic
algorithm), the application area (industrial, cloud-based), the main goal, the

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

141

theoretical or software frameworks used to validate the solution, the types of
metrics, along with the advantages and disadvantages. A quantum
blockchain-driven framework for Web 3.0 is described in paper [6]; the
authors present the quantum cryptographic algorithms for Web 3.0: the
quantum identity authentication (QIA), quantum consensus mechanisms,
quantum block verification and propagation; they also discuss the
infrastructure, and the quantum-blockchain services. The underlying
concepts are based on quantum communication (quantum key distribution
(QKD)), quantum random number generators (QRNGs), and so on; the
applications can be grouped in smart cities, healthcare and Metaverse.

Developments have also been proposed in the healthcare system. Paper
[7] proposes a blockchain security model, with a new framework named
Consultative Transaction Key Generation and Management (CTKGM), which
further develops the Quantum Trust Reconciliation Agreement Model
(QTRAM); the idea is to establish a secure line of transmission between
patients and the medical staff (the general healthcare center). A general
overview of blockchain in healthcare can be found in paper [8], where the
authors, after presenting multiple classifications for the existing research
papers, discuss the use cases of blockchain, such as management of electronic
medical records (EMRs), drug supply chains, remote patient monitoring
(RPM), and others. They also take into account the limitations regarding data
security, scalability and interaction with the patients; the immutability of
blockchain can also pose some problems with the current legislation.

There are also research concepts that try to explore methods of
building quantum circuits that can be further utilized in a quantum
blockchain environment. For example, paper [9] analyzes the idea of two
parties that want to exchange quantum goods, a transfer that is also validated
by a randomly chosen third entity. It describes a circuit for this purpose,
where 16 qubits are required, in order to describe the type of good selected
by each entity, its quantity, together with validation and ancilla qubits; an
alternative circuit is also studied, to take better advantage of the quantum
properties.

This proposed paper analyzes the quantum information processing
research area from a hybrid perspective; the underlying concepts still require
a connection to a quantum computer (or simulator), but it remembers the
connection details to these servers using smart contracts. They allow us to
build custom quantum circuits, and use a connection that is public, secure
(with the help of quantum oracles), and stored on the blockchain.

3. ORIGINALITY

The objective of this project is to present the details for the design of a
system which allows users to extract quantum information, using a
blockchain network. By quantum information we refer to various
parameters, such as quantum circuit, probability histogram, number of
qubits, number of gates, simulation time, error, and so on. With the help of

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

142

SCs, this process can achieve superior characteristics when compared to a
classical solution, as it makes the code visibility of the SCs public, allows
users to interact with them both in a simple (visual) manner and from a
programmer’s point of view, shares the quantum results with the community,
and stores them for further development and analysis; such an approach
helps promote the understanding of the concepts, their possible
implementation, and usage of quantum technologies.

The main use case is described as follows: user A decides to interact
with our proposed system, with the purpose of obtaining the quantum circuit
and simulation results for a particular algorithm (it can be a well-known
protocol or a new idea, without any analyzed circuit behind it). The first step
is a custom search request, sent by the user to a special program that works
with the SCs recorded in our system (for processing quantum data), to which
we will refer to as the Smart Contract Manager (SCM); this request is sent
either from the command line, or by using a web interface for the SCM. Once
received, the manager finds a total or partial match using the data from the
request, by searching in a quantum smart contract database (QCDB) – a
database that contains information which links the SC addresses to their
corresponding description, along with the quantum parameters. The QCDB
itself is classical in its implementation, and its records can be accessed
through SCM, which can also offer users an overview of the local collection
that connects the existing SCs to their corresponding quantum circuits.

The search process has two possible outcomes: if a suitable contract is
found, then the user receives its blockchain address – more than one can be
recommended (by the SCM), depending on the parameters selected by the
user; for example, a researcher that might want to evaluate certain
performance metrics could decide to filter the circuits with a specific number
of qubits, which is likely to yield multiple results.

If no potential matches are found, then a special request for a SC
creation is added (posted) to the future development collection. A specialized
developer from the community then views and applies to solve the request,
for a certain fee (paid in the blockchain currency), which can be either
specified by the user and part of the request, or automatically generated by
the SCM. Once selected, the developer is given a deadline to finish the project,
and upload the SC to the dedicated blockchain, together with the source code;
a new entry, containing the description of this SC is also added to the QCDB.
The SCM is also aware of the QCDB update, and issues a notification to the
initial user, who is now able to interact with this new SC (call its public
functions, with the specified parameters).

Another feature that is necessary, and allows us to be fair, by granting
different views for the overall SCs development, is a score system; if multiple
developers submit their intentions, the SCM chooses the winning developer,
based on his/her reputation. Numerous approaches can be used to enforce
the fact that the developers do not take advantage of the system; a trust score
for each developer guarantees that if the development of the SC is not

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

143

finished in time, he/she will be penalized (a decrease of the score);
otherwise, he will be incentivized (an increase of the score).

This described configuration is presented in Figure 1.

Figure 1. The general diagram of the proposed concepts presents the key elements

such as the Smart Contract Manager (SCM) and the Quantum Contract Database
(QCDB).

The role of the SCM is summarized as follows: first, it acts as an

intermediary between the user and all the other entities that are part of the
system (the QCDB, the blockchain and the developers). The SCM allows users
to execute requests, which are translated to queries to the QCDB, such as
extracting (selecting) certain SCs and filtering the desired ones by different
criteria. If the search fields match at least one entry of the database, then the
SCM returns a list of smart contract addresses (directly or parsed using a
JSON file). Otherwise, if the search returns no results, it adds a new public
request for the development of a SC. The SCM allows, after a time frame, to
evaluate the applying developers, and then to select one automatically based
on the trust score (and availability, depending on the contracts that he/she
has already been selected for). Once finished, the SCM updates the QCDB with
the SC address and the appropriate quantum parameters. The SCM also
overlooks/verifies the upload of the SC to the blockchain. After the final step,
it also notifies the user of the new SC that is now available (and its address);
the SCM also updates the trust score of the publishing developer (as it stores
a list of known developers and their score).

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

144

There are two main ideas that describe how the user can interact with
the SC:

1. In the ideal case, we want the parameters that the user configures to
be part of a special/custom request that describes a quantum circuit. The
APIs for these systems vary depending on the company that shares access to
their quantum devices (or simulators), so no universal formula can be
proposed. This could be achieved by using a special blockchain oracle (see
[10]), which allows us to gather data in a safe and decentralized manner
(such as Chainlink [11] and Provable [12]). In our particular case, the goal is
to use the oracle to forward the user request to IBM Quantum Systems – here,
the quantum circuit is simulated, and the simulation results are returned.
This approach carries a potential security risk, as different actors could use
such a SC as a Distributed Denial of Service (DDoS) attack; this concern
should be mitigated at the end system or at the oracle layer, together with the
general security measures against such attacks.

2. As a backup solution, if, due to various problems, the blockchain
oracle cannot be accessed, or presents difficulties in gathering data from the
quantum system, then the SC should return the actual processed parameters,
which the user should then manually input on the quantum computer’s
terminal (or by using its development framework). For example, if the user
desired to implement a quantum algorithm on a selected number of qubits,
then the SC could indicate the sequence of quantum gates that needs to be
applied to obtain the corresponding circuit. This is less efficient and should
only be used as a last resort.

In this paper, we discuss the first solution, as it automates the process,
by directly connecting the SCs to the real quantum system. Figure 2
schematically presents this process.

Figure 2. A diagram that presents the interaction between the user and the

quantum processing layer; this is achieved using smart contracts.

The details of the user request for the SC development (that can be

posted on a dedicated website) are non-standardized. Although it is possible
to add some default fields (such as number of qubits, selected quantum gates
and so on), the actual description of the problem is problem-specific; an

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

145

experienced quantum researcher or professor and a SC developer need to
understand the actual requirements, their context, and how the contract
should be structured in order to implement the selected protocol,
parameterized, if possible.

Please note that all concepts regarding gas payment and fees are not
designed with the purpose of gathering Ethereum whatsoever but serve to
reflect the blockchain principles. The idea is to use a researcher-
acknowledged currency (or a test one), valid in academia projects, and on
researcher blockchain networks, with the hope of discovering talents and
encouraging quantum development; concepts that stand behind this paper
aim at creating an ecosystem of users that value knowledge, hard-work and
resource sharing, especially in terms of quantum technology and concept
awareness.

We would like to emphasize another key factor which adds flexibility to
our design: the actual quantum computing part is done outside the proposed
blockchain. This presents several advantages – if any change occurs on any
used quantum processor, the connection itself should still work without any
problems; the users are also not required to know the details of the quantum
devices, as the smart contract manager oversees the connection to the
quantum platform.

4. SYSTEM DESIGN
 This section presents the selected software tools, the ideas behind the
database concepts, and the trust mechanism; after this, we show the steps
required to develop a system similar to the one proposed in this paper.

4.1 Software tools

In order to accelerate the development process, the SQLite library was
selected for the implementation of the QCDB, as its properties recommend it
as one of the easiest to configure databases in the world (see the SQLite
official website, [13]). The programming language selected for the project is
Python, offering support for a large number of libraries, that facilitate the
general research process. Details about connecting to a sqlite3 database file
using Python and then interacting with its records can be found on the
official documentation page [14].

We also mention the support that IBM offers researchers in designing
and testing quantum circuits, by allowing their simulation on real quantum
processors in the cloud, on special simulators, or on the local machine. The
probability histogram obtained after simulating each circuit is of great help,
as it validates the proposed concepts and allows for adequate modifications;
for details on simulating these circuits on IBM Quantum in the browser, or for
the documentation of the open-source SDK called Qiskit, written in Python,
please consult [15] and [16] (the official Qiskit GitHub page).

The SCs are written in Solidity (see [17] and [18]), implemented with
the help of Foundry, a smart contract development toolchain (see [19] and

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

146

[20]); a dashboard for a test network, used for development purposes, can be
accessed with the Alchemy framework, AlchemySDK (see [21]).

4.2 Database (QCDB) design

There are multiple ways to imagine the fields that can be saved in a
local database for easier browsing and filtering of the designed SCs. One such
database design is presented below, containing three tables: Developer,
Quantum_circuit and Smart_contract. Each of them has the following
attributes:

1. Developer:
• id <number> – primary key;
• dev_address <string> – blockchain address of software developer;
• dev_score <number> – a rating (number) that indicates the trust score

of the current developer, based on his/her activity, and user reviews;
• dev_info <string> – information about the developer (age, coding

background, rating, and so on; this field can be further broken down into
more fields, if developer filtering becomes essential);

2. Smart_contract:
• id <number> – primary key;
• sc_address <string> – SC blockchain address;
• sc_info <string> – additional information about the SC or notes added

by the developer, description and limitations;
• dev_id <number> – foreign key, id from the Developer table;
3. Quantum_circuit:
• id <number> – primary key;
• sc_id <number> – foreign key, id from the Smart_contract table;
• nr_qubits <int> – number of qubits used in the circuit;
• nr_gates <int> – number of quantum gates used in the circuit;
• qc_info <string> – information about the quantum circuit, description

and use-cases.
The Quantum_circuit table should be open for improvement and

development, as parameters that become essential for the search process, as
well as computing various metrics, will be required by researchers over time
(such as processing time, gate error, quantum volume, selection of gates). On
a different note, the actual code behind the SC (the .sol file) can be saved
directly, using a platform similar to the existing blockchain explorers (see
[22] for example, a Sepolia Blockchain Explorer).

4.3. Trust system

Different systems can be proposed for calculating the scores of
developers, each with its own advantages and disadvantages. We present a
simple system that modifies the trust score (or rating) for each developer
after posting a SC.

For example, each user can offer a rating to their requested contracts,
with the following available options: [good, decent, bad]. The system can also

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

147

validate whether the deadline was respected or not. Depending on (at least)
these factors, a local review score can be calculated and added to the general
score of the developer. A local “decay” factor, that slowly reduces the score of
inactive developers over time, can also be suggested; more improvements,
such as review granularity, can be implemented as the system evolves. We
also consider a low and high ceiling for each developer’s score, with a starting
score for new developers of 0. Table 1 shows a simple local score evaluation,
after a SC was proposed, and then reviewed by the end user who requested
its design.

Table 1. Evaluation score of the current smart contract development

Deadline status
\ User review

Deadline not
respected

Deadline
respected

bad -10 -10
decent -5 +5
good -5 +10

4.4. Development workflow

What still needs to be clarified is how we can go from the quantum
circuit to calling the corresponding SC methods that retrieve the simulation
results. The workflow requires putting together all the ideas, from the actual
description of the quantum circuits to the user calls to these contracts (with
parameters, where available); this process can be defined with the following
steps:

1. The first step is to design the Python code for the desired circuit, with
the associated request to the targeted quantum system (using the Qiskit API).
The goal is to obtain an identifier (URL) that points to the API for the
simulation of the circuit.

2. We use the Solidity language to create the SC, which basically
integrates the custom request (to simulate the quantum circuit) sent to the
external platform into a certain SC; we then upload it to a test network
(locally, or by using the Sepolia test network, for example).

3. Users can now call the simulation method, with the parameters
decided by the developer, which in turn, causes the oracle to interact with the
API from the quantum service provider. After a certain amount of time,
depending on the load of the quantum device, the call result is returned
(most likely in the shape of data serialization formats, such as JSON or XML).

As mentioned before, the oracle component of the solution guarantees
that data are gathered in a decentralized manner.

5. EXPERIMENT AND ANALYSIS

This section describes the steps that were taken for a custom SC, used
to generate a simple entanglement circuit on two qubits.

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

148

5.1 Explanations on the API from IBM Cloud
The proposed plan cannot be implemented in a straightforward

manner with the Qiskit library if a local simulator is targeted, because the
Solidity language does not have access to external Python frameworks (and
the blockchain does not directly allow its SCs to access external data by
design, hence the need for quantum oracles). However, we found a solution
after investigating the general ways of remotely accessing IBM’s devices (real
and quantum simulators), presented in detail in the documentation regarding
the configuration of the connection (see [23]). The two IBM Quantum
channels are IBM Quantum Platform and IBM Cloud.

They both rely on using the Qiskit Runtime Client. IBM Cloud allows
users to access various services remotely, and the one of interest to the
quantum research area is Qiskit Runtime, that allows users to create custom
API calls using the IBM Quantum Qiskit Runtime API; it is in beta phase at the
time of writing (see [24] for details regarding the available commands). The
users can interact with the jobs, backends, sessions and instances (and
more). The Jobs section is of critical importance (to the SC developer), as it
allows us to show the jobs, run, cancel, delete a job, list the results, and other
options.

The SC developer, after understanding and designing the quantum
circuit, can configure the equivalent API call and insert it in a SC, so that when
a user interacts with one of its methods, the request is redirected to the IBM
systems. Depending on the circuit, the user should provide multiple
parameters, but at the very least, two connection parameters are necessary:
the Service Cloud Resource Name (CRN), and an IBM Cloud API key (or an
IBM Cloud Identity and Access Management/IAM token).

A development idea (for companies working with quantum
technologies) is perhaps a public release of a workstation that can be
accessed through a single common token, for research purposes (which
would be recommended in the future with the hope of better integrating the
connection between one or more quantum systems and SCs). This suggestion
is given in the context of keeping information secure, as providing tokens as
parameters is not a best practice and should only be done with test accounts
or in a testing environment (also notice that embedding certain tokens in a
SC is not safe, nor efficient). For the rest of the paper, we assume, for research
purposes, that the CRN and API key can be safely shared with the developer
(and with the quantum community, if need be).

5.2. Design of the SC for the entanglement circuit

As previously mentioned, the developer needs to have access to certain
data from the user (the CRN and IBM API token) – they can be provided on a
dedicated platform. The developer can approach his/her task in (at least) two
ways; if he only wants to use the API, then he needs to configure the
parameters header section (params), which might prove unnecessarily tricky.
The easier way is to use the Python programming language and first code the

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

149

quantum circuit in Qiskit, by using the QiskitRuntimeService class with the
IBM Cloud option, using the provided CRN and API token data. Then, after
configuring the circuit, he can send it to the cloud for simulation, obtaining
the job id in the process. After this step, he can easily retrieve all the jobs (if
more than one test was requested from that user) and filter them by the job
id.

For a system of two qubits with a classical entanglement setup, using a
Hadamard and a CNOT gate, the circuit can be consulted in Figure 3.

Figure 3. A simple entanglement circuit designed using Qiskit – it requires two

qubits, a Hadamard and a CNOT gate.

After configuring QiksitRuntimeService in Python, and the specific

circuit configuration, a job can be added in the execution queue of the desired
device in the Cloud. By using a tool such as curl (cURL) to interact with data
from URLs (see [25] for details), the developer can write the command line
required to retrieve the last 20 jobs in the following way:

curl -g --request GET "https://us-east.quantum-computing.cloud.ibm
.com/jobs?limit=20&offset=-22996455&pending=false" --header "Service-CRN:
test_crn" --header "Authorization: apikey test_key"

(for privacy reasons, the actual CRN and API key were replaced in this
command with test_crn and test_key).

The developer can then obtain all the available information about the
job (details, results, logs, metrics), but the component containing the results
(the distribution of probabilities) is the most important. Notice the job id,
clpn0nbnj01vtk4mho70, in the URL; this id is obtained after running the code
(submitting the job) in Python, and it is also available in the results obtained
after running previous curl command. This can be done as follows:

curl -g --request GET "https://us-east.quantum-computing.cloud.ibm
.com/jobs/clpn0nbnj01vtk4mho70/results" --header "Service-CRN: test_crn" --
header "Authorization: apikey test_key"

In this case, the simulation took place on the simulator called

ibmq_qasm_simulator (with 32 qubits), using 4000 program executions
(called shots). The format of the results is a JSON file, containing two main
tags: metadata and quasi_dists. The quasi_dists tag refers to a dictionary

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

150

containing all the possible quantum results (here, ideally, only the collapsed
00 and 11 states, and their probabilities):

"quasi_dists": [{"00": 0.4885, "11": 0.5115}].

We would like to mention that there are other Python packages
available that can manage GET requests (as alternatives to the curl
command). The representation of the probabilities from the obtained
quasi_dists dictionary using the API call is shown in Figure 4.

The actual content of the SC comes down to two parts. The retrieval of
the job results is mandatory; the second one, that can be optionally called
first, would involve running the job again or creating another similar one
(this idea is not relevant in our paper, but it could be useful in different
scenarios).

Figure 4. The measurement results for the entanglement circuit (on

ibmq_qasm_simulator) – both obtained states are close to the theoretical probability
of 0.5.

The process of testing the retrieval of a custom JSON response

generated by a URL request (including the one obtained using the API from
IBM Cloud) can be achieved with the help of the Foundry-Chainlink Toolkit
(also in beta phase at the time of writing, see [26]). As its documentation
presents, it allows us to test our SC ideas on a local Chainlink node, built
using the Foundry framework. An RPC node can be configured using the
Anvil component from Foundry (the make fct-anvil command), and we can
simulate the testing environment, a Chainlink cluster, composed by default of
5 Chainlink nodes (by running the make fct-init command); these nodes can
be identified in the Docker environment, and appear as foundry-chainlink-
node1 up to foundry-chainlink-node5.

In terms of pseudocode, the general ideas for a SC are presented in
Figure 5.

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

151

Figure 5. The pseudocode which describes the main ideas behind the Smart

Contract.

5.3. Comparison to a classical simulation workflow

By considering the mentioned aspects, we can summarize the main
advantages and drawbacks of a distributed (blockchain) solution for the
analysis of quantum algorithms, with their respective circuits (and potential
storage of the results), when compared to a classical one. These ideas are
presented in Table 2.

Table 2. Comparison between the proposed solution and a classical approach

Criteria Blockchain solution Classical approach

Research and
development

Low – for most algorithms, as
corresponding SCs will already be
available, no programming language
is needed. It only requires the
command-line or a custom interface
to access the needed circuits (it
integrates the discussed concepts as
a library) for the already analyzed
algorithms. For a new algorithm, a
developer needs to accept the task,
program the circuit, and write a SC
that accesses its simulation results,
and then upload it to the blockchain.

Medium-high – the user
needs to have
programming knowledge,
and code his/her own
circuits for an in-depth
analysis (or use an
existing drag & drop
interface). This also
requires the installation
and configuration of a
quantum development
framework.

User cost Low-none – transaction fees (gas)
are needed to call the functions
using a development coin.

Low-none – no cost or
costs required by the
quantum cloud system
(for some of the systems,
with basic functionality).

Infrastructure
cost

Low-none – the already existing
testing (or real) blockchain
networks can be used to store the
SCs that call the quantum systems.

No additional costs.

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

152

Criteria Blockchain solution Classical approach

Solution
complexity

Low-medium – a new complexity
layer is added, which requires using
the methods from the SCs.

Low – by directly
accessing the existing
solutions.

Time Low – the time delay induced by
using a SC is usually insignificant
(although dependent on the
network), and the actual simulation
time is not affected.

Low – just the quantum
simulation time.

Security High – by using the blockchain
approach, the architecture offers an
inherently higher level of security,
together with the application of
oracles.

Low – if an API is used, it
is difficult to validate the
origin of the parsed
results (the data could be
intercepted and then
altered).

Legacy High – the proposed design stores
the SCs used to analyze certain
classes of quantum algorithms in the
blockchain; this allows all
researchers to quickly access the
desired simulations, by calling the
SC methods, which in turn create a
request to the quantum systems. The
local database and the automated
request speed up the research
process.

Low-none – unless the
user saves the circuit and
the simulation results,
and then shares them
with other researchers,
the simulation results
remain private; it is
difficult to optimize
quantum knowledge
sharing with the
community, without the
proper infrastructure.

It can be concluded that the most impact would be found in the

following criteria: Research and development (with a lower barrier of entry to
hands-on algorithms and devices at the same place), Security (by using the
blockchain networks and oracles) and Legacy (as a certified, better way, to
store details about circuit configurations).

We would like to mention the fact that although this infrastructure is
presented as a layer that operates on top of the existing classical blockchain
mechanisms, a different approach can also be considered. The underlying
system for our SCs does not necessarily need to be classical – we could
propose quantum alternatives as parts of our design, that have been
previously analyzed by researchers in the area. As a core validation
component, we could rely on a combination between asymmetric encryption
and a stake vote consensus algorithm; this is presented in paper [27], where
the authors show the quantum circuits for their proposed operations,
describing the quantum circuits to sign a transaction (using a quantum one-
way function), the verification process, and presenting the security analysis

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

153

of their scheme. Another alternative to the classical blockchain would be to
design a quantum blockchain using the entanglement in time as the core
property for implementing the chain concept (see paper [28] for details),
where its authors expand the concept of GHz states, building on the time
stamps for each block.

In terms of potential future development of this project (with the
concepts described here), we can envision two directions: the first one
represents an investigation of multiple quantum frameworks, and perhaps
the creation of a unified (or higher-level) API, that can allow users to select
the actual platform on which they want to run their quantum circuits.
Another idea is based on the research of multiple blockchain technologies;
their selection inevitably impacts the performance of the proposed design.

6. CONCLUSION

The presented paper describes a method of combining the tools
offered by various platforms, such as IBM Cloud for quantum computing,
Foundry for blockchain development, Chainlink for quantum oracles,
together with the Python programming language that interacts with Qiksit;
information about the circuits and developers is stored in a database (on a
classical server) for easier browsing, which can be updated with the
description of quantum circuits when deploying each smart contract to the
blockchain. All these tools lay the foundation of a new way to create quantum
circuits and test them on real quantum devices or simulators. We can then
retrieve the results by using the IBM Cloud API and store the access tokens to
the circuit and their results in public fashion with the help of smart contracts
on the blockchain.

Using the presented steps, multiple quantum algorithms (known or
custom) can be developed, and a collection of algorithms with their actual
simulation results can be publicly obtained. Further developing such a
framework could help us grow the emerging field of applied quantum
computing and offer a better overview of quantum protocols (circuit model)
by giving users theoretical information, together with hands-on simulation
results.

REFERENCES
[1] What is Blockchain? | Oracle, Oracle (Oracle Cloud Infrastructure, OCI),

[Online]. Available: https://www.oracle.com/uk/blockchain/what-is-
blockchain/.

[2] What is Blockchain Security? | IBM, IBM, [Online]. Available:
https://www.ibm.com/topics/blockchain-security.

[3] M. Xu, X. Chen and G. Kou, A systematic review of blockchain,
Financial Innov., vol. 5, no. 27, pp. 1-14, 2019.

[4] M. Allende, D.L. León, S. Cerón, A. Pareja, E. Pacheco, A. Leal, M. Da Silva,
A. Pardo, D. Jones, D.J. Worrall, B. Merriman, J. Gilmore, N. Kitchener and

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

154

S.E. Venegas-Andraca, Quantum-resistance in blockchain networks,
Sci. Rep., vol. 13, no. 5664, pp. 1-23, 2023.

[5] S. Cherbal, A. Zier, S. Hebal, L. Louail and B. Annane, Security in
internet of things: a review on approaches based on blockchain,
machine learning, cryptography, and quantum computing, J.
Supercomput., vol. 80, no. 3, pp. 1-79, 2023.

[6] M. Xu, X. Ren, D. Niyato, J. Kang, C. Qiu, Z. Xiong, X. Wang and V.C.M.
Leung, When Quantum Information Technologies Meet Blockchain
in Web 3.0, IEEE Network, vol. 38, no. 2, pp. 255-263, 2023.

[7] Selvarajan and H. Mouratidis, A quantum trust and consultative
transaction based blockchain cybersecurity model for healthcare
systems, Sci. Rep., vol. 13, no. 7107, pp. 1-21, 2023.

[8] C. C. Agbo, Q. H. Mahmoud and J. M. Eklund, Blockchain Technology in

Healthcare: A Systematic Review, Healthcare, vol. 7 (2), no. 56, pp. 1-

30, 2019.

[9] A.-G. Tudorache, Design of an Exchange Protocol for the Quantum

Blockchain, Mathematics, vol. 10 (21), no. 3986, pp. 1-14, 2022.

[10] What Is a Blockchain Oracle?, Chainlink Foundation, [Online].

Available: https://chain.link/education/blockchain-oracles.

[11] Chainlink: The Industry-Standard Web3 Services Platform,

Chainlink Foundation, [Online]. Available: https://chain.link.

[12] Provable - the provably honest oracle service, Provable Things Ltd.,

[Online]. Available:

https://web.archive.org/web/20231130211804/https://app.provable.

xyz/home/features.

[13] SQLite, Hwaci, [Online]. Available:

https://www.hwaci.com/sw/sqlite/index.html.

[14] sqlite3 — DB-API 2.0 interface for SQLite databases, Python

Software Foundation, [Online]. Available:

https://docs.python.org/3/library/sqlite3.html.

[15] IBM Quantum Documentation, IBM, [Online]. Available:

https://docs.quantum-computing.ibm.com/.

[16] GitHub - Qiskit/qiskit, IBM, [Online]. Available:

https://github.com/Qiskit/qiskit.

[17] Solidity documentation, The Solidity Authors, [Online]. Available:

https://docs.soliditylang.org/en/latest/index.html.

[18] GitHub - ethereum/solidity, open-source, with the core team sponsored

by the Ethereum Foundation, [Online]. Available:

https://github.com/ethereum/solidity.

[19] Introduction - Foundry Book, open-source library, [Online]. Available:

https://book.getfoundry.sh/.

Volume 13, No. 1, June 2025

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

155

[20] GitHub - foundry-rs/foundry, Paradigm and the Rust Ethereum open-

source community, [Online]. Available: https://github.com/foundry-

rs/foundry.

[21] Alchemy - the web3 development platform, Alchemy Insights, Inc,

[Online]. Available: https://www.alchemy.com/.

[22] TESTNET Sepolia (ETH) Blockchain Explorer, Etherscan 2025

(Sepolia), [Online]. Available: https://sepolia.etherscan.io/.

[23] Select and set up an IBM Quantum channel | IBM Quantum

Documentation, IBM, [Online]. Available:

https://docs.quantum.ibm.com/start/setup-channel.

[24] IBM Quantum Qiskit Runtime API | IBM Cloud API Docs, IBM Cloud,

[Online]. Available: https://cloud.ibm.com/apidocs/quantum-

computing.

[25] curl - command line tool and library for transferring data with

URLs, open-source software, [Online]. Available: https://curl.se/.

[26] GitHub - smartcontractkit/foundry-chainlink-toolkit: A plugin to

spin up local Chainlink node with Foundry, open-source, [Online].

Available: https://github.com/smartcontractkit/foundry-chainlink-

toolkit.

[27] W. Wang, Y. Yu and L. Du, Quantum blockchain based on asymmetric

quantum encryption and a stake vote consensus algorithm, Sci.

Rep., vol. 12, no. 8606, pp. 1-12, 2022.

[28] D. Rajan and M. Visser, Quantum Blockchain Using Entanglement in

Time, Quantum Rep., vol. 1, no. 1, pp. 3-11, 2019.

