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Abstract 
 

Cardiovascular Diseases (CVD) continue to be a primary cause of death 
worldwide, underscoring the critical importance of early and accurate 
risk prediction. However, traditional predictive models struggle with 
the complexity and interdependencies in medical data. This study 
addresses this gap by proposing a deep learning-based risk 
assessment model optimized with the Evolutionary Mating Algorithm 
(EMA) to enhance prediction accuracy and efficiency. Our 
contributions include developing a dedicated risk variable for machine 
learning applications and benchmarking the EMA-optimized model 
against ADAM and Particle Swarm Optimization (PSO). The proposed 
method was evaluated using Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), Coefficient of Determination (R²), and 
Standard Deviation (STD). Experimental results demonstrate that the 
EMA-optimized model outperforms traditional optimization methods, 
achieving an MAE of 0.037, RMSE of 0.0464, and an R² of 
approximately 0.91. These results highlight the effectiveness of EMA 
in enhancing cardiovascular risk assessment models, providing a more 
reliable tool for early diagnosis and clinical decision-making. 
 
Keywords: Heart Disease, Deep Learning, Artificial Neural Network, 
Risk Prediction, Evolutionary Mating Algorithm. 

 
1. INTRODUCTION 

Chronic diseases are a major global health concern, contributing to 74% 
of all deaths, with cardiovascular diseases (CVDs) being a leading cause [1]. In 
2023 alone, 41 million deaths were attributed to non-communicable diseases, 
and 88% of Americans over 65 suffer from at least one chronic condition [2]. 
CVDs, often resulting from arterial plaque buildup (atherosclerosis) and blood 
clot risks, remain a significant cause of mortality worldwide, particularly in 
developing nations. Given the complexity of CVD risk factors, early prediction 
models are essential for timely intervention and treatment [2–4]. 

Machine learning (ML) has transformed medical decision-making, 
enabling disease classification and risk prediction  [5,6]. Deep learning models 
have been widely applied in cardiovascular risk assessment, leveraging factors 
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like blood pressure, cholesterol, and diabetes [4,7–9]. However, traditional 
optimizers like ADAM often struggle with global optimization, impacting 
predictive accuracy [3,7,10,11]. 

Evolutionary algorithms (EAs), inspired by natural selection, have 
proven effective in optimizing various domains, including healthcare [12–14]. 
In this study, we introduce the Evolutionary Mating Algorithm (EMA) to 
enhance deep learning models for cardiovascular risk prediction. EMA 
efficiently explores the solution space, improving accuracy compared to 
conventional optimizers [15,16]. 

This research evaluates the effectiveness of a Feedforward Neural 
Network (FFNN) optimized using EMA for CVD risk assessment. Performance 
is compared with ADAM and PSO to determine the most suitable optimization 
approach. Our findings aim to advance predictive modeling in cardiovascular 
healthcare by improving predictive reliability in medical applications. 

 
2. RELATED WORKS 

Mean Arterial Pressure’s correlation with significant cardiovascular 
disease (CVD) events has been substantiated by the ADVANCE study [2,17]. 
Notably, research involving individuals with type 2 diabetes has revealed a 
direct association, showing that for every 13 mmHg increase in MAP, there is 
a corresponding 13% rise in the risk of CVD. Furthermore, an elevation in MAP 
is anticipated to result in a higher incidence of CVD-related hospitalizations 
among individuals with type 2 diabetes [17]. These findings underscore a clear 
and direct link between MAP and the risk of cardiovascular disease. 

Feedforward neural networks have been successfully used for battery 
SOC estimation, while evolutionary machine learning has shown promise in 
CVD risk prediction. EMA, as a recent advancement, has demonstrated 
superior optimization capabilities, suggesting its potential for further 
exploration in both energy and possibly medical applications. 

The study titled “An evolutionary machine learning algorithm for 
cardiovascular disease risk prediction” applied an evolutionary machine 
learning algorithm to predict cardiovascular disease (CVD) risk, leveraging 
evolutionary principles to optimize model performance. The study utilized a 
population-based search approach to refine predictive features and improve 
classification accuracy. Results showed that the evolutionary model achieved 
higher predictive performance compared to traditional machine learning 
methods, demonstrating the potential of evolutionary optimization in 
healthcare applications [18]. 

In the study titled “Using the evolutionary mating algorithm for 
optimizing deep learning parameters for battery state of charge estimation of 
electric vehicle”, the Evolutionary Mating Algorithm (EMA) was explored to 
optimize deep learning parameters for battery SOC estimation. EMA, inspired 
by evolutionary mating strategies, was employed to fine-tune 
hyperparameters, leading to enhanced model accuracy and convergence 
speed. Their findings showed that EMA outperformed conventional 
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optimization methods, achieving MAE of 3.458% and RMSE of 4.7%, reducing 
error rates and improving the overall predictive capability of the deep learning 
model [19]. 

 
3. ORIGINALITY 

 
Figure 1. FFNN model 

The core objective of this paper is to assess a patient's risk of developing 
cardiovascular diseases by employing machine learning techniques for 
prediction. The approach used would involve feature engineering a risk factor 
variable, which would indicate the risk level a patient had. This approach 
offers valuable support to medical practitioners, enabling them to input basic 
patient data and preliminary test results to estimate the patient's risk level for 
cardiovascular diseases accurately. To achieve this objective, the study 
concentrates on optimizing two key parameters of the deep learning model—
weights and biases—by minimizing the Mean Absolute Error (MAE). MAE is 
employed as the objective function to improve predictive accuracy and is 
formulated as follows:  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦

𝑖
|𝑛

𝑖=1                 (1) 

In equation (1), n stands for the number of observations, yi stands for the 
actual values, and 𝑦

𝑖
 stands for predicted values. 

This study employs the Evolutionary Mating Algorithm (EMA) to 
optimize and fine-tune the weights and biases of the proposed deep learning 
(DL) model, with the Feedforward Neural Network (FFNN) serving as the 
foundational model. The optimization process involves integrating the EMA 
function into the FFNN framework and executing it until the predefined 
maximum number of iterations is reached. Upon completion of training using 
the training dataset, the EMA-optimized DL model is then evaluated on 
previously unseen data from the testing dataset. Figure 1 provides a visual 
representation of the proposed EMA-DL framework. Further elaboration and 
thought processes can be seen from the flowchart of Figure 2.  
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Figure 2. EMA-DL flowchart 

 
4. SYSTEM DESIGN 
4.1 Dataset 

This study employs a cardiovascular disease dataset, with all pertinent 
details regarding its structure and usage outlined in this chapter. Table 2 
presents the data configuration specifications used for both training and 
testing phases. 

 
Figure 3. Input Variables 

 
It is important to note that the risk assessment variable is continuous in 

nature, expressed as a percentile. While it theoretically ranges from 0 to 100, 
the observed values fall within the range of 50 to 97.8. The interpretation and 
application of this variable are intended to be at the discretion of the medical 
practitioner.  
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Figure 4. Output Variable (Risk) 

The dataset utilized for this research comprises 70,000 patient records, 
as documented in the reference [20] along with their corresponding features 
outlined in the provided Table 1. This rich dataset is instrumental in 
supporting the investigation and drawing meaningful insights related to the 
study's objectives. 

Table 1. Dataset variables 
Features Variables Missing Values 

ID id Non 
Age Age Non 

Height Height Non 
Weight Weight Non 
Gender Gender Non 

Systolic blood pressure ap_hi Non 
Diastolic blood pressure ap_lo Non 

Cholesterol Cholesterol Non 
Glucose Gluc Non 

Smoking Smoke Non 
Alcohol intake Alco Non 

Physical activity Active Non 
Cardiovascular disease Cardio Non 

 
The table presented outlines the 13 original features or variables 

included in the dataset before preprocessing. Although most of these features 
are self-explanatory, it is important to highlight that the "ID" feature, 
associated with patient identification, will be excluded from all models in this 
study. Additionally, to prepare the dataset for input into the deep learning 
algorithm—a feedforward neural network—the data must be normalized and 
transposed. These steps will be performed following the preprocessing stage 
and the incorporation of any feature-engineered variables.  

The data processing began with a comprehensive assessment to identify 
and address any missing or duplicate entries within the dataset. Following the 
completion of this initial phase, the identification and treatment of outliers 
were undertaken. 

 
4.2 Features  

By segmenting continuous inputs into discrete groups or bins, the 
algorithm was better equipped to capture nuanced differences across data 
classes. For instance, the age variable—originally recorded in days—was 
transformed into the standard age format in years [17]. 



Volume 13, No. 1, June 2025 

 
EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168 

129 

Additionally, new variables were introduced for use in the study, with 
Mean Arterial Pressure (MAP) and Body Mass Index (BMI) identified as 
essential features across all risk assessment models. The risk variable itself 
functioned as the primary target output for these models.  

In the medical field, Mean Arterial Pressure (MAP) represents the 
average blood pressure a person experiences throughout a single cardiac cycle 
and is calculated as follows: 

𝑀𝑒𝑎𝑛 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑀𝐴𝑃)  =  
2 𝑎𝑝_𝑙𝑜 + 𝑎𝑝_ℎ𝑖

3
                           (2) 

This feature serves as a crucial indicator of both peripheral resistance 
and cardiac output. These findings underscore a clear and direct link between 
MAP and the risk of cardiovascular disease. 

𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 (𝐵𝑀𝐼)   =  
𝑤𝑒𝑖𝑔ℎ𝑡

ℎ𝑒𝑖𝑔ℎ𝑡2               (3) 

A comprehensive comparative examination revealed that individuals 
classified as obese experienced an earlier onset of incident Cardiovascular 
Disease (CVD), a greater proportion of their lifespan marked by CVD-related 
morbidity, and a reduced overall survival rate.  

What sets this study apart is its emphasis on the risk variable, which is 
designed to estimate a patient's likelihood of developing Cardiovascular 
Disease (CVD). This variable incorporates critical factors including “Age,” 
“MAP,” “Cholesterol,” and “BMI,” and is calculated using the following formula: 

 

𝑅𝑖𝑠𝑘  =  
𝐴𝑔𝑒 + 𝑀𝐴𝑃 + 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 + 𝐵𝑀𝐼

𝑜𝑙𝑑𝑒𝑠𝑡 𝑎𝑔𝑒 + ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑀𝐴𝑃 + ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 + ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝐵𝑀𝐼
× 100            (4) 

The selection of these components is grounded in established medical 
research [21], which highlights the significant roles that age and cholesterol 
play in the early detection and assessment of CVD risk. Indeed, age has 
consistently emerged as a significant factor, with older individuals being more 
susceptible to the onset of CVD [22]. 

Table 2 presents the complete set of variables utilized in this study, 
following the completion of data analysis and preprocessing procedures. As 
stated earlier the formulated features, MAP, and BMI are necessary features 
for any model that uses a medical dataset (as long as the initial variables are 
within the dataset) while the variable RISK identifies how much risk a patient 
is in to get afflicted with a cardiovascular disease. 

Figure 3 shows the figures of all the inputs, while Figure 4 shows the 
output prior to transposing them. It clearly shows the distribution of data 
within the dataset.  It illustrates the selected input variables, how they are 
provided to the model, and the nature of the output, specifically, the predicted 
values the model is designed to generate. 
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Table 2. Input and Output Variables 

Features Variables Missing Values Preview Input/Output 
Age ( years old) Age Non 55, 76, 62, 42 Input 

Body Mass Index BMI Non 
1 – Normal 

2 – Overweight 
3 – Obese 

Input 

Mean Arterial 
Pressure 

MAP Non 

1 – Normal  
2 –Elevated 

3 – Elevated (within early stage 1 
hypertension) 

4 – Stage 1 Hypertension 
5 – Stage 2 hypertension 

Input 

Gender Gender Non 
1 – Male 

2 - Female 
Input 

Cholesterol Cholesterol Non 
1 - normal 

2 - high 
3 – very high 

Input 

Glucose Gluc Non 
1 - normal 

2 – high  
3 – very high 

Input 

Smoking Smoke Non 
0 – non-smoker 

1 - smoker 
Input 

Alcohol intake Alco Non 
0 – doesn’t drink 

1 - drinks 
Input 

Physical activity Active Non 
0 – not active 

1 - active 
Input 

Risk factor 
(percentiles) 

Risk Non 64.32, 88.15, 72.98 (percentiles) Output 

 

4.3 Feed Forward Neural Network (FFNN) 

Feed Forward Neural Network is a type of deep neural network where 
only a forward pass of data occurs, used to map the non-linearities governed 
by data, due to a multi-layer perceptron [23]. A deep network is typically 
characterized by an increase in the number of layers, featuring, at a minimum, 
2 hidden layers [24]. The number of hidden layers, neurons, and activations 
are best selected after various experiments so that optimum results can be 
acquired. The activation function of each layer was based on ref. [25]. The 
equations of each activation utilized in this model are represented as follows: 

Input layer ∶ 𝑦 = 𝑢 (linear function)                           (5) 

Hidden layer 1: hyperbolic tangent (tanh) y =
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢+ 𝑒−𝑢               (6) 

   Hidden layer 2 ∶ leaky rectified linear unit (ReLU) 𝑦 = max(0.3 ∗ 𝑢, 𝑢)                   (7) 

Output Layer ∶ clipped ReLU 𝑦 =  {
0,            𝑢 < 0
𝑢,   0 ≤ 𝑢 ≤ 1
1,            𝑢 > 1

              (8) 

In the context of these equations, y represents the output generated by 
each neuron, while u denotes the total input to the neuron. This total input is 
calculated as the weighted sum of all inputs combined with the bias. 
Represented as: 

𝑢 =  ∑ 𝑤𝑖𝑗𝑥𝑖 +  𝑏𝑗𝑖                    (9) 

Here in equation (9), xi represents the output from the ith neuron or node 
of a previous layer, wij denotes the weight of the connection between layers i-
j, and bj refers to the bias of the current layer. 
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4.4 Evolutionary Mating Algorithm (EMA) 

Evolutionary Mating Algorithm (EMA) represents a specialized variant of 
EAs that emphasizes recombination or mating-like operations among 
candidate solutions. By combining genetic information from parent solutions, 
EMA enhances solution diversity and exploration capabilities, facilitating the 
discovery of novel and potentially superior solutions within complex and 
dynamic solution spaces. EMA operates through iterative cycles of selection, 
crossover, and mutation among candidate solutions represented as 
chromosomes or parameter vectors encoding treatment strategies [19]. EMA 
combines elements of genetic algorithms and natural mating processes to 
function. It is a recently established metaheuristic algorithm that stems from 
Hardy-Weinberg (HW) principles and is inspired by the mating process in 
organisms. 

        𝑥𝑚 =  [

𝑥1 
1 ⋯ 𝑥1

𝑑

⋮ ⋱ ⋮
𝑥𝑛

2⁄
1 ⋯ 𝑥𝑛

2⁄
𝑑

]                            (10) 

𝑥𝑓 =  [

𝑥𝑛
2

+1

1 ⋯ 𝑥𝑛
2

+1

𝑑

⋮ ⋱ ⋮
𝑥𝑛

1 ⋯ 𝑥𝑛
𝑑

]                  (11) 

𝐼𝑚𝑎𝑡𝑒𝑠 = 1 + [𝑣𝑎𝑟(𝑥𝑚,∗
𝑇 ) − 𝑣𝑎𝑟(𝑋𝑓,∗

𝑇 )]                             (12) 

𝑋𝑐ℎ𝑖𝑙𝑑
𝑇 =  {

𝑝.  ∗ 𝑋𝑚,∗
𝑇 + 𝑞.  ∗ 𝑋𝑓,∗

𝑇         𝑓𝑜𝑟 𝐼𝑚𝑎𝑡𝑒𝑠 ≥ 0

𝑝.  ∗ 𝑋𝑓,∗
𝑇 + 𝑞.  ∗ 𝑋𝑚,∗

𝑇          𝑓𝑜𝑟 𝐼𝑚𝑎𝑡𝑒𝑠 < 0 
         (13) 

𝑝 = 𝑟𝑎𝑛𝑑𝑛(1, 𝑑)               (14) 

𝑞 = (1 − 𝑝)                             (15) 

The algorithm begins by initializing a population of potential solutions, 
typically derived from the available dataset. According to equation (10), 
during the initialization phase, the candidate solution x is divided into two 
distinct groups: xm, representing the male population, and xf, representing the 
female population. Here, n denotes the population size, and d indicates the 
dimensionality of the problem. 

Following initialization, the fitness function is evaluated for each 
individual in the population. Based on these evaluations, the most optimal 
solutions from both xm and xf are identified and retained, with fitter solutions 
being favored for the next steps. 

Next, a crossover operation is performed to generate new offspring 
solutions by combining selected male and female solutions. This mating 
process, described in equation (12), is guided by sexual selection principles. 
The terms var (𝑥𝑚,∗

𝑇 ) and var (𝑥𝑓,∗
𝑇 ) represent the variances of the chosen male 

and female individuals, respectively, at iteration T, and Imates denotes the EMA's 
mating mechanism. 
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Once mating concludes, the generation of offspring (𝑋𝑐ℎ𝑖𝑙𝑑
𝑇 ) proceeds, as 

shown in equation (13). The variables p and q, derived from equation (14) and 
(15), are based on normal random distributions and guide the variation in 
offspring creation. These new solutions are then evaluated using the fitness 
function, and the best-performing individuals are selected to serve as parents 
in subsequent generations. This cycle is repeated iteratively until the 
algorithm converges. 

Additionally, two parameters—Cr and r—are introduced to simulate 
environmental pressures such as predator encounters. Cr represents the 
crossover probability, while r denotes the likelihood of encountering 
predators, both of which influence the evolutionary dynamics of the algorithm. 
With environmental changes, the best solution’s characteristics would 
significantly be altered, since the offspring could be assumed to be dead or 
alive. 

 
5. EXPERIMENT AND ANALYSIS 

 
Figure 5. Convergence Plot 

The study was carried out using MATLAB on a laptop equipped with an 
Intel Core i7 processor, Intel Iris Xe graphics, and 16GB of RAM. MATLAB 
served as the main platform for dataset processing and model development. 
The dataset underwent a division into groups of two subsets: a training dataset 
and a testing dataset, with 80-20, 70-30, and 60-40 splitting ratios. 
Subsequently, each model was trained using the training dataset, and its 
efficacy was evaluated through the testing dataset. The initial dataset 
comprised 70,000 rows and 13 attributes. However, after undergoing 
preprocessing and data cleaning, the dataset was refined to approximately 
60,000 rows and 10 attributes, specifically tailored for the risk assessment 
task. Normalization was done to standardize and scale the data. Finally, it was 
transposed and then provided to the models.   

This study employs the performance metrics mean absolute error, mean 
squared error, root mean squared error, standard deviation, coefficient of 
determination, and maximum error to evaluate risk assessment. Models 
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executed under each data partition were compared to determine the most 
suitable partition for this research. 

The efficiency and convergence of each model's training process are 
illustrated in Figure 5, which highlights the 60:40 data partition, identified as 
the optimal split ratio following multiple trials. Table 3 presents the outcomes 
associated with this partition, reflecting the effectiveness of each model’s 
optimizer during training. Notably, all models were trained a minimum of ten 
times to ensure consistency and reliability in the results.  

Table 3. Optimized DL algorithms 

(%)  R2 MAE MSE RMSE 
MAX 
Error 

Precision 
Standard 

of 
Deviation 

Computational 
time 

Adam-
dl 

60:40 

87.9 4.3 .28 5.3 24 53 5.27 20 sec 

Pso-dl 86.8 4.3 .30 5.5 34 77 5.51 10 min 
Ema-

dl 
90.6 3.7 .22 4.6 19 87 4.6 220 sec 

Table 3 presents a comparative analysis of three optimization 
techniques—Adam-dl, PSO-dl, and Ema-dl—evaluated based on their 
performance using key metrics: Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient of 
Determination (R²), Standard Deviation (STD), precision, and computational 
time at the optimal data partition ratio. Adam-dl stands out as the most time-
efficient optimizer, requiring only 20 seconds on average for training across 
all splits, whereas Ema-dl takes significantly longer (220 – 300 seconds on 
average) across all splits. Despite its slower computation, Ema-dl consistently 
demonstrates superior performance, achieving the best metric values in all 
partitions. This highlights its capability to deliver high-quality results, making 
it a strong contender in applications where predictive performance outweighs 
the importance of computational speed. 

 
Figure 6. Scatter plot of Actual vs predicted (60/40) 

Ema-dl's superior performance stems from its evolutionary approach, 
which optimally balances the exploration and exploitation of the solution 
space. For instance, at the 60:40 data partition, Ema-dl achieves an MSE of 
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0.22% and an MAE of 3.7%, outperforming both Adam-dl and PSO-dl. On the 
other hand, Adam-dl, though computationally efficient, exhibits slightly worse 
evaluation results, indicating a trade-off between speed and precision. PSO-
dl's results fall between Adam-dl and Ema-dl, but it fails to outperform Ema-dl 
in any specific aspect. 

The choice of data partition also plays a critical role in the model's 
performance. The 60:40 split, where 60% of the data is used for training and 
40% for testing, produces the most favourable results across all optimizers. 
This balance allows the model to generalize well by leveraging sufficient 
training data while maintaining diversity in the testing dataset. As the 
proportion of training data increases (70:30 and 80:20), the performance 
slightly declines, likely due to reduced testing data, which affects the model's 
ability to evaluate generalization effectively.  

 
Figure 7. Risk assessment Actual vs Predicted 

The plot in Figure 5 is the training convergence plot showing the Mean 
Absolute Error (MAE) over its run (the iterations/epochs) for different 
optimization methods at the 60:40 splitting ratio. Among the convergence 
shown by each model, models that had been optimized by EMA appear to have 
the fastest initial convergence rate, as it was shown to reach lower MAE values 
quicker than models optimized by ADAM and PSO. Models optimized by ADAM 
tend to have a smooth convergence rate and generally the best convergent rate 
but not the lowest MAE overall.    

The Evolutionary Mating Algorithm (EMA) has proven highly effective in 
optimizing deep learning models, especially by enhancing the distribution and 
accuracy of predictions. As illustrated in Figure 7, EMA yields results that more 
closely match actual outcomes compared to other optimization techniques. 
This superior distribution suggests a balanced and consistent performance 
across various data points, which is crucial for robust and reliable models, 
which could be inferred from Table 3’s r2 and precision results of ema-dl, being 
90.6% and 87% respectively.  
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Table 4. Sample table of observations (Actual vs predicted) 

Sample  Inputs 
Output (Risk - 

Actual) 
EMA - DL PSO - DL 

ADAM - 
DL 

1 

Gender (2) 
Cholesterol (1) 

Glucose level (1) 
Smoking (0) 
Alcoholic (0) 

Active (0) 
Age (62) 
BMI (1) 
MAP (3) 

24.21% 22.78% 21.27% 23.75% 

2 

Gender (1) 
Cholesterol (1) 

Glucose level (1) 
Smoking (0) 
Alcoholic (0) 

Active (0) 
Age (57) 
BMI (1) 
MAP (2) 

30.53 30.14 29.57 31.34% 

3 

Gender (2) 
Cholesterol (1) 

Glucose level (1) 
Smoking (0) 
Alcoholic (0) 

Active (1) 
Age (40) 
BMI (1) 
MAP (2) 

11.58% 13.35% 14.3% 8.13% 

4 

Gender (1) 
Cholesterol (1) 

Glucose level (1) 
Smoking (0) 
Alcoholic (1) 

Active (1) 
Age (44) 
BMI (2) 
MAP (3) 

33.68% 33.83% 32.16% 37.08% 

5 

Gender (1) 
Cholesterol (1) 

Glucose level (1) 
Smoking (0) 
Alcoholic (0) 

Active (1) 
Age (62) 
BMI (1) 
MAP (3) 

46.32% 46.08% 41.24% 48.02% 

One of the key strengths of EMA lies in its ability to enhance precision, 
which reflects the consistency and reliability of predictions. Table 4 shows a 
sample of the model’s testing results. It includes the actual risk values and the 
predicted risk values of all optimized models. The table contains a random 
sampling of 5 entries. 

In terms of performance metrics, EMA-optimized models achieve 
remarkable results, boasting an MAE of 0.037 and an RMSE of 0.0464. These 
metrics indicate that EMA minimizes prediction errors more effectively than 
other optimization methods. These metrics highlight EMA’s overall robustness 
in producing dependable models that can consistently minimize prediction 
inaccuracies. 
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While the ADAM optimizer offers a faster and more straightforward 
training process, EMA outshines it in producing more precise and better-
distributed predictions. Figure 6 further enhances this point by showing the 
scatterplot of real vs predicted results of all three optimized models. From 
these plots, it could be seen that the Adam-optimized model, though it strives 
to deliver precise results, is neither as consistent as the other 2 optimized 
models nor as precise. Ema-optimized models show the most consistent and 
precise results. 

 
5.1 Application and limitations 

A practical application of this algorithm is its integration into clinical 
decision support systems for early cardiovascular disease risk assessment. 
Given that the model outputs a percentile risk score (e.g., 0.44 indicating a 44% 
risk), it can be used as a preliminary screening tool in hospitals and 
telemedicine platforms. Physicians could input basic patient data (blood 
pressure, cholesterol levels, BMI, age) into the system to compute a 
personalized risk score, and help prioritize high-risk patients for further 
evaluation. However, this study has some limitations. First, the model was only 
designed and tested within a controlled dataset, meaning real-world clinical 
validation is still required. Additionally, the algorithm does not incorporate 
feature selection, which might impact model interpretability. Lastly, while 
EMA outperformed ADAM and PSO in accuracy, it has a higher computational 
cost, which could affect scalability in large-scale healthcare applications. 
Future work should focus on optimizing the algorithm for real-time 
deployment and evaluating its effectiveness in diverse patient populations. 

 
6. CONCLUSION 

In this conducted study, an innovative approach was employed to assess 
the risk factor associated with the likelihood of each patient developing 
cardiovascular disease. The primary objective of this research was to serve as 
a preliminary or early diagnostic tool for medical practitioners, aiding them in 
evaluating the potential risk of cardiovascular diseases for individual patients.  

In the course of this investigation, the risk assessment process was 
executed mainly through the application of a feed forward neural network 
optimized by the EMA (ema-dl) model. The results acquired from this 
investigation were better than the other optimization techniques, specifically 
ADAM and PSO. Notably, the results acquired indicated that the ema-dl model 
algorithms consistently exhibited better performance, with the 60:40 data 
split ema-dl model algorithm achieving the best MAE and RMSE, reaching 
approximately 0.037 and 0.0464 respectively. The only downside is its 
computational time, which is generally higher than the other optimized model, 
adam-dl. This could be mitigated by running the model on a better-performing 
device or improving the algorithm itself. 

Therefore, this study demonstrated the feasibility of incorporating a 
preliminary risk assessment as a potential solution within the medical sector. 
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With further refinement, this approach could potentially be employed to 
promptly address and treat high-risk patients, or at the very least, alleviate 
symptoms, thereby enhancing the prospects of recovery and survivability. The 
findings suggest that integrating such proactive risk assessment measures 
holds promise for optimizing medical interventions and improving patient 
outcomes in the context of high-risk conditions.  
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