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Abstract 
 
Rice seed quality assessment is a critical measure in promoting 
agricultural productivity, as high-quality seeds directly influence 
crop yield and resilience. One of method for evaluating seed quality is 
texture analysis, which leverages the Gray Level Co-occurrence 
Matrix (GLCM) to extract meaningful features from seed images, 
providing insights into their condition and potential performance. 
This research aims to determine the optimal performance of GLCM 
parameters in identifying the texture characteristics of rice seed 
quality. The experiments were conducted using four angles (0°, 45°, 
90°, and 135°) and three-pixel distances (1, 2, and 3), evaluating 
features such as homogeneity, contrast, dissimilarity, and energy. 
The results indicate that certain parameter configurations 
significantly affect the discriminative power of the extracted features, 
with the Support Vector Machine (SVM) classifier achieving the 
highest performance at a pixel distance of 1, with an accuracy of 0.73, 
precision of 0.79, recall of 0.73, and F1-score of 0.72. These findings 
demonstrate that optimizing GLCM parameter settings directly 
contributes to improved classification performance, highlighting the 
method's potential for enhancing rice seed quality assessment. 

  
Keywords: GLCM, rice seed quality, texture parameters, feature 
optimization, texture analysis. 

  
1. INTRODUCTION 

The quality of the rice seeds significantly influences the effectiveness of 
rice production. High-quality seeds are capable of producing rice with the 
highest possible weight and resistance to pests and diseases, in addition to 
increasing the productivity of the harvest [1]. In modern agriculture, using 
superior seeds has become one of the primary strategies to support global 
food security. Good seeds can be identified by various indicators and 
characteristics, such as their ability to withstand extreme environmental 
conditions and their high germination capacity, which have been 
demonstrated to increase the efficiency of rice production. The rapid 
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development of technology and methods that can detect and ensure the 
quality of rice seeds is a critical factor in efforts to enhance the sustainability 
of the agricultural sector.     

Research to enhance seed quality and rice production is conducted in 
multiple countries, particularly those where rice is a primary export 
commodity. For instance, Thailand is engaged in research focused on 
selecting seeds based on morphological and genetic traits to develop superior 
aromatic rice [2]. India prioritizes the evaluation of seeds using 
biotechnological methods, particularly molecular techniques such as PCR, 
ELISA, and SNP markers, to guarantee seeds' genetic integrity and health. 
This approach enhances the quality of seeds in both domestic and 
international [3, 4]. Vietnam implements agrotechnology, particularly in soil 
and water management, which markedly enhances the potential of local rice 
field seeds by optimizing resource utilization, improving soil health, and 
augmenting crop yields while reducing environmental impacts [5]. In 
Malaysia, research is focused on the application of digital technology to 
monitor seed quality through data processing and sensor-based systems [6]. 
The global urgency to ensure the availability of high-quality seeds to meet the 
increasing demand for sustenance is reflected in these studies. 

Image processing has become a critical technique for evaluating the 
quality of seeds, providing a non-destructive and efficient alternative to 
conventional methods. Researchers have created sophisticated systems that 
analyze seed characteristics, including size, color, and shape, by applying 
various algorithms and machine learning models. Consequently, agricultural 
productivity has been enhanced [7]. The Grey Level Co-occurrence Matrix 
(GLCM) method is a widely used image processing technique used to evaluate 
the texture characteristics of seeds in a non-destructive and efficient manner. 
This method is based on the spatial relationship between pixels and utilizes 
parameters such as homogeneity, contrast, energy, and dissimilarity [8]. 
GLCM is capable of detecting texture patterns that are pertinent to seed 
quality, including the presence of surface roughness, fractures, or other 
defects. 

Support Vector Machine (SVM) is a machine learning algorithm for 
regression and classification tasks. SVM operates by identifying an optimal 
hyperplane that distinguishes data from various classes in a high-
dimensional space. SVM can effectively manage data that is not linearly 
separated by employing kernel functions, including the linear, polynomial, or 
Radial Basis Function (RBF). In image processing, SVM is frequently 
employed for pattern recognition, including texture analysis, object 
classification, and face detection. The primary benefit of SVM is its capacity to 
operate effectively on high-dimensional datasets and generate the highest 
possible margins between classes. 

A comparison between SVM and the Decision Tree (DT) method is 
implemented. In this investigation, DT constructs a prediction model in the 
form of a tree, which is predicated on decision criteria. Decision trees divide a 
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dataset into subgroups based on specific attributes, with each branch 
representing a potential outcome based on the input data. In this study, the 
quality of rice seeds will be classified by comparing the SVM and Decision 
Tree methods. The texture feature values will be extracted using the Grey 
Level Co-occurrence Matrix (GLCM) method, with pre-processing performed 
beforehand. 
 
2. RELATED WORKS 

Several previous studies have researched the classification of seed 
quality using an image-processing approach. GLCM has been extensively 
employed in various agricultural and culinary technology research projects 
involving image processing. For instance, it is employed to identify diseases 
in papaya fruit [9], rice variety [10] and analyze the leaf patterns of herbal 
plants [11]. The benefit of GLCM is its adaptability in capturing diverse 
textural properties pertinent to specific analytical requirements. The 
forthcoming research will employ GLCM to assess the quality of rice seeds 
based on surface texture metrics, which serve as markers of the seeds 
physical and physiological condition.  

A texture-based feature extraction via the GLCM approach to assessing 
the quality of coffee beans, incorporating texture metrics such as 
homogeneity, contrast, and energy as inputs for the Support Vector Machine 
(SVM) and Random Forest algorithms was discussed by [12]. The study 
demonstrates that GLCM effectively captures texture patterns pertinent to 
item quality categorization. A combination of SVM and CNN to detect grain 
quality, yielding very accurate findings from images was described by [13]. 
The Coarse Tree Classifier (CTC) for the categorization of rice plants using 
RGB color analysis within the framework of decision tree-based classification 
was employed by [14]. 
 
3. ORIGINALITY 

This research is original due to its comparative investigation of the 
GLCM texture feature extraction approach alongside the SVM and DT 
classification algorithms to evaluate the quality of rice seeds in Indonesia 
using digital photographs. This research is compelling as it investigates 
texture parameters at angles of 0°, 45°, 90°, and 135°, along with distances of  
1, 2, and 3 pixels, to determine the optimal configuration for seed quality 
classification, given that numerous preliminary studies have not addressed 
parameter variations in GLCM [15][16]. This research also focuses on the 
normalization and enhancement of image quality utilizing CLAHE to generate 
consistent images and reduce background noise, a method that is 
infrequently employed consistently in comparable research [17][18] and 
Grabcut for separate background with object [19]. This project aims to 
contribute to the application of image processing technology to enhance the 
quality of the agricultural sector, particularly in assessing the quality of rice 
seeds. 
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4. SYSTEM DESIGN 
The research began with image acquisition of rice seeds using a high-

resolution digital camera in a controlled lighting environment. The resulting 
images are grouped into three quality classes, including high, average, and 
bad seeds. In the initial stage, the number of images successfully acquired in 
the high class was 164, the average class was 107, and the bad class was 110. 
Data distribution was done by normalizing the images to be balanced by 
eliminating inappropriate images, such as those that were blurry or did not 
match the class's characteristics, so each class's final stage had 100 images 
each.   

The next stage is to improve image quality using the Contrast Limited 
Adaptive Histogram Equalization (CLAHE) method to clarify image details 
and increase contrast. The image background is eliminated using the Grabcut 
Thresholding method to separate the main object from the background so 
that the image is more aligned and focuses on the rice seeds. Texture feature 
extraction was carried out using the GLCM method at four angles (0°, 45°, 
90°, and 135°) and three distances (1, 2, and 3) on the extracted texture 
parameters, including homogeneity, contrast, energy, and dissimilarity. The 
results of this feature extraction are used in the classification process by 
comparing two classifier methods, namely SVM and DT, to identify the best 
parameters for detecting the quality of rice seeds. The final stage is to 
evaluate the performance of the classification model using a confusion 
matrix, namely accuracy, recall, and F1-score.  

This study used SVM and DT algorithms to classify rice seed quality 
based on texture features extracted using the GLCM method. SVM searches 
for optimal hyperplanes to separate classes in high-dimensional space using 
kernel functions such as linear, polynomial, or RBF. Previous studies have 
shown that SVM is superior in detecting texture-based objects, such as plant 
leaf damage patterns or microscopic analysis of materials [20]. The SVM 
stage begins by finding the support vector value using the kernel function, 
which is the RBF kernel with Equation (1) [21, 22]. 

 

    (1) 
 

where  represents the kernel value between two data points, xi and xj. 
∥xi−xj∥2 is the Euclidean distance between two points, and  is a kernel 

parameter that controls the influence distance of a data point. 
The multi-dimensional Euclidean value is derived from the square 

root of the sum of the squares of the differences of each feature. This study 
employs four parameters: homogeneity, contrast, energy, and dissimilarity, 
which enable SVM to operate with multidimensional GLCM data. 
Subsequently, identify the best hyperplane by maximizing the margin 
between the positive and negative classes using Equation (2). 
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     (2) 

where w is the weight vektor, b is the bias hyperplane, ξi is the Slack variables 
to accommodate margin violations in non-linearly separable data, and c is the 
regularization parameter controls the trade-off between large margins and 
tolerance to misclassification. 

 The DT technique employs a rule-based decision framework to 
construct a tree-structured predictive model. This approach successively 
partitions the dataset according to the most informative attributes until it 
attains classification outcomes. Despite being less complex than SVM, 
decision trees offer a more comprehensible interpretation and are 
extensively utilized for classification tasks that necessitate transparent result 
interpretation, such as medical picture segmentation and geospatial data 
analysis. This research utilizes the findings of GLCM feature extraction at 
angular parameters of 0°, 45°, 90°, and 135°, and distances of 1, 2, and 3 
pixels to compare the performance of two methods utilizing the evaluation 
metrics of accuracy, precision, recall, and F1-score. Figure 1 illustrates the 
approach employed in the research. 

 

 
Figure 1. The architecture of the proposed 

 
5. EXPERIMENT AND ANALYSIS 

Image quality uniformity can be achieved homogeneously by applying 
image contrast enhancement techniques or CLAHE. This process is used to 
increase the intensity of the contrast value so that the basic color is more 
visible. CLAHE was computed based on Michelson Contrast (MC) with 
equation (3). 

       (3) 
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where Imax and Imin represent maximum and minimum pixel intensities in 
seed regions; according to the dataset, the average MC is 0.25 for 300 images, 
but the average MC for CLAHE is 0.34, indicating a 35% enhancement in 
contrast. The absence of CLAHE resulted in a classification accuracy of 0.65 
for SVM, whereas the inclusion of CLAHE improved it to 0.73, highlighting the 
essential role of contrast enhancement in distinguishing texture features. 

Grabcut is employed to segment seeds from the backdrop, so removing 
extraneous noise. The decrease of background noise was quantified using the 
standard deviation (σ) of pixel intensities in non-seed regions as outlined in 
equation (4). 

 

   
                                                                                                                                                               (4) 

 
 
where xi represents pixel intensity,  μ is the mean, and N signifies the number 
of pixels. Before implementing the GrabCut method, the standard deviation of 
background pixel intensity 𝜎raw = 0.18 demonstrated significant fluctuation 
attributable to noise and illumination distortions. Following the application 
of GrabCut, the standard deviation 𝜎processed = 0.13 diminished by 28%, 
signifying a more uniform background. In one sample image, the mean 
background intensity was μ=120, with pixel fluctuations between 110 and 
130 prior to the application of GrabCut. Subsequent to processing, this 
variation was diminished to a range of 115 to 125, indicating enhanced 
segmentation quality. 

Table 1 displays samples of seed classes, including high, average, and 
bad, by carrying out the pre-processing stages of CLAHE and grabcut 
thresholding. 

Table 2 illustrates various patterns and distinctions in texture 
characteristics according to rice seed quality classifications (high, average, 
and poor) utilizing GLCM parameters. The High class typically demonstrates 
lower values for the homogeneity parameter than the Average and Bad 
classes at same distances. Contrary to the first assertion, the Bad class 
frequently attains the greatest homogeneity values of 0.992 at distance 1, 
indicating a more uniform distribution of pixel intensity in lower-quality 
seeds. The contrast parameter is markedly elevated in the High class, 
especially at angles of 45° and 90° with a distance of 3 pixels, measuring 
455.433 at 45°, indicating enhanced pixel intensity fluctuation and more 
intricate textural characteristics. 
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Table 1. Seeds Rice Quality Class 
ID Original CLAHE Grabcut Class 

0 

   

High 

1 

   

Average 

2 

   

Bad 

 

The High class consistently exhibits lower energy parameter values 
compared to the Average and Bad classes, signifying diminished homogeneity 
in pixel intensity distribution. Conversely, the dissimilarity parameter is 
elevated in the High class, particularly at a distance of 3 pixels and an angle of 
0°, at 0.908, which highlights more significant disparities in pixel intensity. 
The trends indicate that integrating contrast, dissimilarity, and homogeneity 
metrics can proficiently distinguish rice seed quality. Additional assessment 
using metrics such as accuracy and F1-score is necessary to confirm the 
effectiveness of these parameters. 

Table 2. GLCM Feature Extractions 
Images Dis Deg Hom Con Dis En Class 

 

1 0 0.779 243.950 0.939 0.767 High 
1 45 0.775 350.799 0.913 0.766 High 
1 90 0.778 276.332 0.931 0.767 High 
1 135 0.776 332.561 0.917 0.767 High 
2 0 0.992 31.475 0.929 0.991 High 
2 45 0.991 71.229 0.840 0.991 High 
2 90 0.991 106.387 0.761 0.990 High 
2 135 0.991 57.216 0.871 0.991 High 
3 0 0.774 370.729 0.908 0.765 High 
3 45 0.771 455.433 0.887 0.763 High 
3 90 0.772 449.626 0.888 0.764 High 
3 135 0.774 397.786 0.9015 0.766 High 
4 0 0.995 18.450 0.845 0.994 High 
4 45 0.994 25.320 0.790 0.993 High 
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Images Dis Deg Hom Con Dis En Class 
4 90 0.995 20.110 0.830 0.994 High 
4 135 0.994 22.750 0.810 0.993 High 
5 0 0.996 15.890 0.860 0.995 High 
5 45 0.995 18.240 0.840 0.994 High 
5 90 0.996 12.670 0.890 0.995 High 
5 135 0.995 16.980 0.855 0.994 High 

 

1 0 0.991 29.726 0.897 0.991 Average 
1 45 0.991 59.194 0.797 0.990 Average 
1 90 0.991 35.818 0.876 0.991 Average 
1 135 0.992 20.487 0.929 0.991 Average 
2 0 0.991 58.729 0.800 0.990 Average 
2 45 0.991 59.719 0.796 0.990 Average 
2 90 0.990 67.308 0.770 0.990 Average 
2 135 0.992 19.995 0.931 0.991 Average 
3 0 0.990 81.721 0.722 0.990 Average 
3 45 0.989 110.475 0.626 0.989 Average 
3 90 0.990 98.052 0.667 0.990 Average 
3 135 0.991 37.071 0.874 0.991 Average 
4 0 0.993 10.220 0.920 0.992 Average 
4 45 0.992 15.340 0.875 0.991 Average 
4 90 0.993 8.950 0.940 0.992 Average 
4 135 0.992 12.560 0.900 0.991 Average 
5 0 0.994 7.890 0.950 0.993 Average 
5 45 0.993 9.120 0.930 0.992 Average 
5 90 0.994 6.450 0.965 0.993 Average 
5 135 0.993 8.760 0.945 0.992 Average 

 

1 0 0.992 25.839 0.825 0.992 Bad 
1 45 0.992 33.233 0.776 0.991 Bad 
1 90 0.992 13.753 0.907 0.992 Bad 
1 135 0.992 19.271 0.870 0.992 Bad 
2 0 0.991 44.200 0.703 0.991 Bad 
2 45 0.992 33.233 0.776 0.991 Bad 
2 90 0.992 25.833 0.826 0.992 Bad 
2 135 0.992 19.271 0.870 0.992 Bad 
3 0 0.990 61.161 0.591 0.990 Bad 
3 45 0.990 58.383 0.611 0.990 Bad 
3 90 0.992 33.273 0.777 0.991 Bad 
3 135 0.991 34.806 0.768 0.991 Bad 
4 0 0.994 5.670 0.960 0.993 Bad 
4 45 0.993 8.340 0.925 0.992 Bad 
4 90 0.994 4.220 0.980 0.993 Bad 
4 135 0.993 6.890 0.940 0.992 Bad 
5 0 0.995 3.450 0.985 0.994 Bad 
5 45 0.994 5.120 0.955 0.993 Bad 
5 90 0.995 2.980 0.990 0.994 Bad 
5 135 0.994 4.560 0.965 0.993 Bad 

Note: dis (distance), deg (degree), hom (homogeneity), con (contrast), dis 
(dissimilarity), en (energy). 
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The comparative examination of distances 4 and 5, as provided in Table 
2, indicates that the assertion that increased distance generally promotes 
class difference is not universally applicable. At a distance of 3 pixels, the 
High-quality class has markedly greater contrast, measuring 455.433 at 45° 
and a dissimilarity of 0.887 at 45°, in comparison to distances of 4 and 5, 
especially at angles of 45° and 90°. The energy value at distance 3, ranging 
from 0.763 to 0.766, is much lower than at distances 4 and 5, which range 
from 0.991 to 0.995, suggesting diminished uniformity in pixel intensity 
distribution for the High class. This indicates that whereas greater distances 
may boost individual parameters for particular classes, they may not 
consistently augment discriminative power across all parameters or classes. 

The significance of distance 3 in this work resides in its capacity to 
harmonize textural sensitivity with computational feasibility. The heightened 
contrast and variance at this distance are particularly adept at revealing 
small textural differences in high-quality seeds, essential for precise quality 
separation. Despite the energy parameter lacking a regular trend, the 
stability of contrast and dissimilarity patterns at distance 3 offers a solid 
basis for classification. Moreover, distance 3 enhances the balance between 
recording distinctive spatial correlations and reducing computational 
complexity, rendering it a practical option for real-world applications in 
agricultural quality evaluation. 

Figure 2 illustrates a sample of the outcomes from preprocessing a high-
quality rice seed texture image captured at a distance of 1 and a scale of 25 
degrees. This photograph clearly illustrates the distinct variations in the 
texture of the seed's surface.  

 
Figure 2. Comparative Texture with GLCM 

 

The assessment of rice seed quality classification performance indicates 
notable trends for SVM and Decision Tree (DT) algorithms at different 
distances. The SVM method attains optimal performance at a distance of 1, 
yielding an accuracy of 0.73, precision of 0.79, recall of 0.73, and an F1-score 
of 0.72, highlighting its proficiency in identifying essential texture patterns at 
reduced distances. Nonetheless, SVM demonstrates a significant decrease in 
performance at distance 2, with accuracy falling to 0.47 and F1-score to 0.38, 



Volume 13, No. 1, June 2025 

 
EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168 

119 

indicating that texture features become less discriminative as the spatial 
associations between pixels expand. At a distance of 3, the SVM demonstrates 
a considerable recovery, achieving an accuracy of 0.57 and an F1-score of 
0.53; nevertheless, its precision and recall scores of 0.57 are suboptimal in 
comparison to distance 1. 

Conversely, the DT method exhibits increasingly enhanced performance 
with greater distances, albeit it maintains lower overall metrics compared to 
SVM. At a distance of 1, the decision tree achieves an accuracy of 0.40 and an 
F1-score of 0.37, indicating restricted discriminative capability. Performance 
exhibits a marginal enhancement at distance 2, with an accuracy of 0.43 and 
precision of 0.5, and reaches its zenith at distance 3, attaining a maximum 
accuracy of 0.57, precision of 0.64, and F1-score of 0.54. At a distance of 3, 
Decision Trees (DT) marginally surpass Support Vector Machines (SVM) in 
precision, achieving 0.64 compared to DT's precision of 0.57, and aligns with 
its accuracy of 0.57, demonstrating DT's flexibility to broader spatial 
patterns. 

The Support Vector Machine (SVM) employs optimization parameters at 
various distances for the Gray Level Co-occurrence Matrix (GLCM). For a 
distance of 1, the optimal configuration is C = 1000 and gamma = 0.1 using 
the Radial Basis Function (RBF) kernel. At a distance of 2, the best 
parameters are C = 100 and gamma = 1 with the RBF kernel. Finally, for a 
distance of 3, the highest C value is 500 and gamma = 1, also utilizing the RBF 
kernel. Figure 3 presents a heatmap of the confusion matrix utilized for 
evaluating accuracy, recall, precision, and F1-Score. 

 

  
Figure 3. Heatmap SVM & DT Classifier 

 

SVM classification uses optimization parameters at several appropriate 
distances for GLCM distance 1, the best configuration with parameters C = 
1000, gamma = 0.1 with the RBF kernel, while in GLCM with a distance of 2, 
the best parameter optimization is with a value of C = 100, gamma = 1 with 
the RBF kernel and finally in GLCM with a distance of 3, the highest C value is 
500, gamma = 1 with the RBF kernel. 
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Table 3. Confusion Matrix GLCM 
Classifier Distance Acc Pre Rec F1 

SVM 
1 0.73 0.79 0.73 0.72 
2 0.47 0.32 0.47 0.38 
3 0.57 0.57 0.57 0.53 

 4 0.52 0.50 0.52 0.49 
 5 0.48 0.45 0.48 0.44 

Decision 
Tree 

1 0.40 0.39 0.40 0.37 
2 0.43 0.51 0.42 0.40 
3 0.57 0.64 0.57 0.54 

 4 0.55 0.60 0.55 0.53 
 5 0.53 0.58 0.53 0.51 

 
Table 3 explains that the efficacy of SVM diminishes progressively from 

distance 1 to 5, with accuracy values declining from 0.73 to 0.48, as the GLCM 
feature forfeits essential local features necessary for hyperplane delineation. 
SVM attains superior performance at a distance of 1, achieving an accuracy of 
0.73, whereas DT exhibits optimal performance at a distance of 3 with an 
accuracy of 0.57. The decision-making process of SVM is based on 
determining an ideal hyperplane for effective class separation [23]. This 
method is most effective when features exhibit high discriminative power, 
particularly at reduced GLCM distances, such as distance 1, resulting in an 
accuracy of 0.73 and an F1-score of 0.72. As the distance grows, the extracted 
texture features diminish in local discriminative details and become more 
coarse, resulting in a notable fall in SVM performance. At a distance of 2, the 
accuracy of SVM declines to 0.47, while the F1-score decreases to 0.38. 
Although SVM demonstrates a marginal improvement at distance 3 with an 
accuracy of 0.57, its precision and recall, both at 0.57, are subpar relative to 
shorter distances, indicating diminished feature significance for hyperplane 
optimization. 

Conversely, Decision Tree (DT) utilizes a rule-based hierarchical 
methodology, which is more adept at exploiting extensive spatial linkages 
and coarser texture patterns. This adaptability enables DT to enhance its 
performance incrementally at greater distances, reaching a maximum at 
distance 3 with an accuracy of 0.57, precision of 0.64, and F1-score of 0.54. At 
a distance of 3, DT attains superior precision compared to SVM, recording 
0.64 against 0.57, so illustrating its efficacy in leveraging global texture 
information. Despite DT's overall accuracy being worse to SVM's maximum 
performance at distance 1, its consistency over distances underscores its 
resilience in managing less granular features. Consequently, SVM's 
dependence on localized discriminative characteristics renders it more 
effective at short distances, while DT's hierarchical structure facilitates 
competitive performance at greater sizes by leveraging broader spatial 
patterns. 

 
 



Volume 13, No. 1, June 2025 

 
EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168 

121 

6. CONCLUSION 
The study effectively implemented the texture feature extraction 

technique utilizing GLCM with angular parameters of 0°, 45°, 90°, and 135°, 
as well as distances of 1, 2, and 3 pixels, for the classification of rice seed 
quality. The procedure commences with image acquisition and data 
normalization to ensure balanced distribution and enhance image quality 
with CLAHE and GrabCut. Feature extraction yields characteristics including 
homogeneity, contrast, energy, and dissimilarity, which are employed for 
classification using SVM and DT. Assessment relies on accuracy, precision, 
recall, and F1-score measures to determine the optimal parameters for seed 
quality detection. 

The enhancement in classification accuracy, achieving 0.73 with SVM at 
a distance of 1, directly indicates the efficacy of GLCM parameter 
optimization since the chosen configurations produced texture 
characteristics that optimized class separability. The performance of the SVM 
at distances 2 and 3 exhibited a notable decline, with accuracies of 0.47 and 
0.57, the results correspond with the findings of Singh et al. (2022) [23]. 
Decision Trees exhibit more consistent performance while overall inferior to 
Support Vector Machines at distance 3, achieving a maximum accuracy of 
0.57, precision of 0.64, recall of 0.57, and an F1-score of 0.54. According to 
these results, SVM demonstrates optimal performance at distance 1, 
establishing it as the preeminent model for assessing rice seed quality based 
on textural data. Concurrently, DT exhibits more consistent performance, 
reaching its apex at distance 3. 
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