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Abstract  
 
Bearings are one of the important components in the machine that 
functions as a holder and positions the shaft alignment radially when 
rotating. Statistics show that about 50% of failures in electric motors 
are related to bearings. Therefore, monitoring bearing performance 
and efficiency before damage occurs is necessary to avoid more 
serious damage and save repair costs. This research aims to build a 
classification model that can identify bearings in normal condition and 
6 types of damage (inner crack, outer crack, ball crack, and a 
combination of both) using the HUST dataset. The model building 
process begins with collecting datasets, processing and extracting 
dataset features, building classification models and evaluating the 
models that have been made. A decision tree is a type of supervised 
machine learning used to categorize or make predictions based on 
how a previous set of questions were answered. The model is a form 
of supervised learning, meaning that the model is trained and tested 
on a set of data that contains the desired categorization. The results of 
the decision tree model that has been built are able to identify bearing 
damage with an accuracy of 94.47%.  

  
Keywords: Bearing, machine learning, decision tree, HUST dataset 

  

1. INTRODUCTION  
Bearings are one of the important components in rotating machines that 

function as a holder and position the shaft alignment radially when rotating 
[1], [2], [3]. Statistics show that faults in rotary motors related to bearings 
account for nearly 50% of the total number of common faults that occur[4]. 
Therefore, the performance and efficiency of bearings greatly affect the 
successful operation of a machine[5]. In principle, if the use of the bearing has 
been in accordance with the specified load, speed and temperature as well as 
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adequate lubrication, it can be assumed that damage to the bearing can be 
caused by its own material fatigue[6]. Several innovative techniques have been 
proposed for fault detection using vibration signals. Bearing failure, usually 
resulting in abnormal vibration caused by unsuitable materials, maintenance 
factors, and improper design and use, can affect the reliability of the 
mechanical system and may even cause costly accidents[7], [8], [9], [10]. Some 
purely mechanical techniques used in the past such as temperature 
monitoring[11], [12], electric motor current monitoring[13], wear analysis, 
vibration measurement[14] have been reviewed[15]. However, vibration 
analysis is popular at the moment, as it can do a lot of damage detection 
without stopping the machine[16]. 

Industry 4.0 is a transition phase in industry that utilizes the integration 
of digital technology in various aspects of the production process. In this 
context, it provides a great opportunity to implement predictive maintenance, 
where data analysis and artificial intelligence are used to predict potential 
damage to equipment before the damage actually occurs[17].One method that 
is very relevant in predicting bearing failures based on vibration signals in 
bearings using machine learning decision tree method[18]. 

Ball bearing fault detection by using Feature Representation and 
Alignment Network (FRAN) was done by[19]. The purposed algorithm shows 
improved transfer and diagnostics performance between identical machines 
in different operating conditions, and it is computationally lighter than its 
original counterpart. The ball bearing fault detection by using Minimum 
variance cepstrum (MVC) has been introduced to detect the ball bearings in 
automotive wheels by[20]. The MVC was able to detect incipient faults in 4 out 
of 12 normal bearings which passed acceptance test as well as in bearings that 
were recalled due to noise and vibration. Modified the Hilbert-Huang traform 
Algorthm for early fault detection of ball bearing was done by [21].  

The ball bearing fault detection in the previous result was done by using 
FRAN, MVC adn Hilbert Huang transform. The decision tree algoritm to detect 
ball baring fault is rarely used. Therefore, combining the analysis of vibration 
signal data in the HUST bearing dataset and the decision tree algorithm, this 
research can make a valuable contribution in modeling that can learn related 
patterns and classify bearing defects with a high percentage of accuracy. 

This reseach focus on the ball bearing foult detection by using the 
decision tree algorithm. The dataset contains 99 raw vibration data of 6 types 
of defects in 5 types of bearings at 3 working conditions with a high sample 
rate of 51,200 samples per second. This research can make a valuable 
contribution in modeling that can learn related patterns and classify bearing 
defects with a high percentage of accuracy. 
 
2. RELATED WORKS 

Dhakar, et al [22] Decision tree-based J48 classification algorithm more 
accurately identifies healthy and damaged bearing conditions in air 
compressors with the help of all statistical indicators. The dataset consisted of 
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360 examples having 17 attributes with 2 classes (healthy and damaged). A 
higher classification accuracy than the J48 algorithm (96.66%) has been 
obtained for healthy and damaged bearing conditions. 

Alonso, et al [17] bearing damage detection using the decision tree 
method has been carried out with a percentage of accuracy reaching 100% on 
the CWRU bearing dataset. However, this research focuses more on comparing 
models that have been made instead of classifying bearing damage on the 
CWRU dataset. Envelope analysis used as a feature extraction method also has 
shortcomings due to the inability of this method to characterize ball defects. 

An integrating knowledge transfer via transfer learning to detect 
servomotor bearing defects in the industrial robot done by[23]. The current 
signals of the servomotor are utilized to build the model for fault  detection  . 
This processed data. The purported algoritm shows an average accuracy of 
more than 99 %. 

An bearing fault detection and diagnostic method for nuclear power 
plants (NPPs) have been done by[24]. This paper explores various KNN 
algorithms and proposes a hybrid model—Segmentive Cosine Weighted K-
nearest neighbors (SCWK)—to improve FDD in NPPs. The proposed model 
combines segmentive mechanisms, cosine distance metrics, and weighted 
KNN to achieve robust and versatile fault detection with minimal signal 
processing and feature engineering which could benefit efficiency of 
computational resource. The SCWK model outperforms traditional AI 
methods, the SCWK model’s potential to enhance the reliability and safety of 
NPP operations by providing an efficient and practical solution for bearing 
fault detection. 

The CWRU (Case Western Reserve University) bearing dataset was 
analysed by using the Fine-Tuned TabNet Convolutional Neural Network Long 
Short-Term Memory (FTCNNLSTM) Algoritm to optimized the bearing fault 
detection by[25]. The FTCNNLSTM model, augmented with TabNet, achieved 
96% accuracy, outperforming other methods. 

The CWRU (Case Western Reserve University) bearing dataset was 
analysed by using bidirectional long short-term memory (Bi-LSTM)  to predict 
the bearin fault detection by [26]. The proposed model achieved a final test 
prediction accuracy of 98.42% and had low computation time, making it an 
interesting candidate for application in bearing fault prognosis.  

The development of aa unsupervised method for constructing the 
bearing Health Index (HI) using GMM to estimate vibration signal distributions 
have been done by[27]. The introduced GMM-HI allows for accurate detection 
of bearing early failures and characterizes the health index of bearings.  

 
3. ORIGINALITY 

This study investigates the condition of bearings under normal 
conditions and when they are damaged such as inner cracks, outer cracks, ball 
cracks, and combinations of these using machine learning techniques, 
specifically the decision tree method. By applying the decision tree algorithm 
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to vibration and acoustic emission data taken from the HUST Bearings dataset, 
this research aims to develop a classification model that can accurately identify 
different types of bearing damage. The novelty of this research lies in its focus 
on using decision trees to diagnose and classify 7 complex condition of 
bearings based on multi-dimensional sensor data, thus contributing to the 
development of damage detection in mechanical systems. 

This study also evaluates the performance of the decision tree model in 
comprehensively analyzing the HUST Bearing dataset. Through rigorous 
evaluation, including comparative analysis with other machine learning 
techniques, this research aims to validate the effectiveness of decision trees in 
fault diagnosis. This study systematically compares the decision tree method 
with other alternative models, providing empirical evidence supporting the 
reliability and suitability of this method for real-world applications in 
industrial machinery breakdown diagnosis. By addressing these objectives, 
this study underscores the importance of decision tree algorithms in 
advancing predictive maintenance strategies and optimizing operational 
efficiency in mechanical systems. 

The HUST Bearing data set give us a complete data with high sampling 
time. This dataset contains 99 raw vibration data of 6 types of defects (inner 
crack, outer crack, ball crack, and their 2-combinations) in 5 types of bearings 
at 3 working conditions with a sample rate of 51,200 samples per second. 
Therefore, this enables us to to work with real-world data. 

 
4. SYSTEM DESIGN 

This study used bearing data sets form Hanoi University of science and 
technology (HUST)[4], which contains vibration data obtained from sensors 
on the machine and can provide the information needed to build machine 
learning models that can predict or detect damage to bearings. This research 
consists of several stages with the research flow shown in the following figure 
1. 

4.1 Collecting Data Set 

HUST Bearing Data Set 
The data was collected using a 750 W (1 HP) induction motor as the 

prime mover that drives the multi-step shaft and is controlled by an inverter 
and power supply. The multi-step shaft allows changes in diameter, and Leroy 
somer brake powder serves as a simulated load. To monitor the load and 
motor speed, a torque transducer and dynamometer were attached to the 
shaft. Broken bearings are mounted into various types of flexibly replaceable 
housing on the multi-step shaft. PCB 325C33 accelerometers are mounted 
vertically on the bearings to measure vibration. 
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Figure 1. Research Flow 

 

 
Figure 2. Vibration testing and data collection scheme by hust[4] 

This dataset contains 99 raw vibration data of 6 types of defects (inner 
crack, outer crack, ball crack, and their 2‐combinations) in 5 types of bearings 
at 3 working conditions with a sample rate of 51,200 samples per second. 
Bearing dimensions are shown in table 1. 
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Table 1. Description of the file name in the HUST dataset[4] 
Bearing 

ID 
Normal 

State 
Inner 
Fault 

Outer 
Fault 

Ball 
Fault 

Inner 
– 

Outer 
Fault 

Inner 
- Ball 
Fault 

Outer 
– Ball 
Fault 

6204 N40x I40x O40x - IO40x - OB40x 
6205 N50x I50x O50x B50x IO50x IB50x OB50x 
6206 N60x I60x O60x B60x IO60x IB60x OB60x 
6207 N70x I70x O70x B70x IO70x IB70x OB70x 
6208 N80x I80x O80x B80x IO80x IB80x OB80x 

x=0; No load | x=2 ;200 W | x=4 ; 400 W 

4.2 Reprocessing Raw Data Set 

Reprocessing raw data is a process that involves a series of steps to 
correct, clean, and prepare raw data so that it can be used more effectively in 
further analysis[28]. The purpose of reprocessing raw data involves improving 
data quality, ensuring accuracy, addressing issues such as missing values or 
anomalies, and converting data to a format more suitable for descriptive 
statistical analysis. In descriptive statistics, clean, complete, and structured 
data allows for more accurate compilation of summary statistics such as mean, 
median, standard deviation, and others. 

4.3 Segmenting Data Set 

In this research, dataset segmentation is used to analyze and understand 
data behavior patterns by dividing data into segments of varying sizes (20, 25, 
50, 75, 100, and 200 segments). By dividing large data into specific segments, 
researchers can observe changes in patterns as the sample data in a segment 
increases or decreases, which in turn can help in finding the best segment size 
for classification model analysis[29]. Smaller segment sizes result in more data 
samples, thus enriching the generalizability of the model. However, small 
segment sizes also tend to increase the accumulation of noise that can obscure 
relevant information. On the other hand, larger segment sizes (smaller sample 
data) allow for reduced noise accumulation as random variations can be 
averaged over a larger time interval. However, a large size tends to cause the 
model to overfit the training data due to the lack of variation. In addition to 
reducing noise, this variation in segment size also tests the reliability of the 
model as well as computational efficiency. A larger segment size (small sample 
data) allows for a faster computational process, although it does not always 
result in the best model performance. By trying these segment size variations, 
researchers can find the most suitable data group size so that the resulting 
model has high accuracy and efficient computing time. 

The HUST bearing dataset has a sampling rate of approximately 51,200 
samples per second, with each data collection session lasting 10 seconds. This 
means that each class in the dataset contains approximately 512,000 vibration 
samples. This high sampling rate enables detailed analysis of the vibration 
signal, making it easier to detect and analyze subtle anomalies or variations in 
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bearing behavior. The following table illustrates the segmentation of the 
dataset by size variation. 

 
Table 2. illustration of dataset segmentation with size variation 

DataFrame Segments Sample per Segments Total Samples in 
Dataset 

20 ± 25,600 

±51,200 samples/s 
× 10 second = 

 
±512,000 samples 

25 ± 20,480 
50 ± 10,240 
75 ± 6,827 

100 ± 5,120 
200 ± 2,560 

4.4 Feature Extraction 

Feature extraction is used to display bearing conditions in time-based 
signals identified through time domain methods. Descriptive statistic 
calculation-based analysis, one of several time domain methods available, is 
used to generate trends from the resulting spectra[30]. Thus, the analyzable 
patterns can detect any newly emerging bearing defects. In addition, the 
vibration data of the HUST bearing was also analyzed for stationarity using the 
statistical calculation method and time domain approach. The statistical 
calculation follows the following equation:[22]. 

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡 ∶  �̅� =
1

𝑁
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(4) 

𝑅𝑀𝑆 ∶  𝑥𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑥2

𝑁

𝑖=1

 

(5) 

𝑀𝑎𝑘𝑠 𝐴𝑏𝑠𝑜𝑙𝑢𝑡 ∶  𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥(|𝑥1|, |𝑥2|, … … . |𝑥𝑛|) (6) 
𝑃𝑒𝑎𝑘𝑡 𝑡𝑜 𝑝𝑒𝑎𝑘 ∶ 𝑥𝑝 = max(𝑋) − min (𝑋) (7) 

𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
max 𝑣𝑎𝑙𝑢𝑒

𝑥𝑟𝑚𝑠
 

(8) 

𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑥𝑟𝑚𝑠

�̅�
 (9) 

𝐼𝑚𝑝𝑢𝑙𝑠 =
max 𝑣𝑎𝑙𝑢𝑒

�̅�
 

(10) 

𝑀𝑖𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡 ∶  𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛(|𝑥1|, |𝑥2|, … … . |𝑥𝑛|)   (11) 
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4.5 Decision Tree Classification 

A decision tree is a tree-shaped graphical representation, which forms a 
sequential diagram illustrating all possible decision alternatives and their 
corresponding outcomes[31], [32]. Starting from the root nodes, each internal 
node reflects the basis of the decision-making process. Each internal 
node/branch illustrates how a choice can lead to subsequent nodes. Finally, 
each final or leaf node represents the outcome that can be obtained.  

The perfect attribute to be used as a root node or node is an attribute that 
has a high purity (homogeneity) value, or in other words, an attribute that has 
a low impurity (heterogeneity) value. Gini impurity can be calculated using the 
following equation:[33] 

 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝𝑖
2

𝑐

𝑖=1
 (12) 

𝐺𝑖𝑛𝑖(𝑡) = 1 − (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑠 "𝑡𝑟𝑢𝑒")2 − (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑠 "𝑓𝑎𝑙𝑠𝑒")2 (13) 
 

If the “true” and “false” leaves on the root node attribute do not present the 
same total number of values, it is necessary to calculate the Weighted Impurity 
of the impurity value of each leaf. Using the following equation :[33] 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑡)

=  (
𝑇𝑜𝑡𝑎𝑙  𝑙𝑒𝑎𝑓 "𝑡𝑟𝑢𝑒"

𝑇𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑒𝑎𝑓 𝑣𝑎𝑙𝑢𝑒
) 𝐺𝑖𝑛𝑖 true

+ (
𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑎𝑓 "𝑓𝑎𝑙𝑠𝑒"

𝑇𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑒𝑎𝑓 𝑣𝑎𝑙𝑢𝑒
) 𝐺𝑖𝑛𝑖 "𝑓𝑎𝑙𝑠𝑒 

(14) 

where 𝒕 is a particular node, 𝒄 is the number of classes and 𝒑𝒊 is the probability 
of a sample at node 𝒕 belonging to class 𝒊. 

After the features are extracted, the decision tree construction starts by 
calculating the Gini impurity for each of the eleven identified features. The 
feature with the lowest Gini impurity value is selected as the root node. After 
the selection of the root node, the process continues by recalculating the Gini 
impurity, considering the subsets created based on the root node, using 
equations (12) and (13). This process is repeated for each subset generated, 
so that the feature with the lowest Gini impurity can be assigned as the internal 
node. The Gini impurity calculation will continue until multiple branches are 
formed, leading to leaf nodes. After all the nodes are calculated, the weighted 
impurity for each node will also be calculated using equation (14) to provide a 
clearer understanding of the data purity at each point in the decision tree. 

4.6 Comparison of Performance and Computation Time of Decision 
Tree Models with Comparison Algorithms 

In this study, we built a decision tree algorithm as a bearing damage 
classification model that is expected to have high accuracy and fast 
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computation time. As a reference of success, this research compares the 
performance and computation time of decision tree algorithm with several 
other algorithms. The algorithms used for comparison in this study include 
logistic regression, support vector classifier, random forest, naive bayes 
classifier, k-nearest neighbor classifier, and gradient boosting classifier. 

Some previous studies have used similar approaches for bearing damage 
diagnosis. Umer Farooq et al. (2024)[34] used various machine learning and 
deep learning techniques in an effort to detect failures in ball bearings to 
improve predictive maintenance. Umang Parmar (2021)[35] compared 
algorithms such as Artificial Neural Network, Support Vector Machine (SVM), 
and Multinomial Logistic Regression to detect the types of damage in 
cylindrical roller bearings. Toma et al. (2020)[36] applied the K-Nearest 
Neighbor, Decision Tree, and Random Forest algorithms for bearing damage 
diagnosis based on motor current data. Deepam Goyal et al. (2019)[37] used 
Discrete Wavelet Transform and statistics in feature extraction, followed by 
Support Vector Machine (SVM) for bearing condition classification. Given 
these previous studies, our research seeks to provide further evaluation of the 
performance of specially selected algorithms to support the development of 
fast and efficient models for bearing fault diagnosis. 
 
5. EXPERIMENT AND ANALYSIS 

The research is conducted to obtain a bearing damage classification 
model based on its vibration signal. After processing the data set and 
continued with model building and evaluation. The ready data set is divided 
into 2, namely 70% train data and 30% test data with random_state=1 to get 
consistent results[38]. The results of model building and evaluation are shown 
in Figure 3. 

 
Table 3. Decision Tree Model Evaluation Results for each data frames 

 Accuracy  Precision Recall F1-score 

df_20 92,30% 92,31% 92,30% 92,27% 
df_25 93,69% 93,67% 93,69% 93,67% 
df_50 94,47% 94,48% 94,47% 94,47% 
df_75 94,26% 94,35% 94,26% 94,29% 

df_100 93,77% 93,79% 93,77% 93,77% 
df_200 89,44% 89,46% 89,44% 89,44% 

 

Figure 3 is model performance metrics of the model corresponding to 
Table 3, used to evaluate the performance of the classification model by 
visually presenting the number of correct and incorrect predictions for each 
data class.  

The model evaluation results show excellent performance with an 
accuracy value of 94.47% shown in Table 4. The precision value indicates how 
well the model classifies positive data, where the highest value is in class 'N' 
with a precision of 1.00, which means the model is completely correct in 
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identifying class 'N'. This shows that the model has a very good ability to 
distinguish class 'N' from other classes. In addition, the 'IO' and 'I' classes also 
have high precision values of 0.97 and 0.94 respectively, indicating that the 
model is quite reliable in classifying these classes with little error. 

 

 
Figure 3. Model Performance Metrics 

Table 4. Details of Classification and Prediction Results df_50 
 Label Precision  Recall F1-Score 

 B 91% 90% 90% 
 I 94% 98% 96% 
 IB 97% 94% 96% 
 IO 97% 97% 97% 
 N 100% 100% 100% 
 O 92% 92% 92% 
 OB 88% 87% 88% 

Weighted Average  94,48% 94,47% 94,47% 
Accuracy  94,47% 

 
Recall, or sensitivity, measures the ability of the model to find all 

instances of the class that are actually positive. A high recall value indicates 
that the model is able to find most instances of each class correctly. In the 
results of this evaluation, class 'N' also stood out with a recall value of 1.00, 
indicating that the model was able to find all instances of class 'N' without 
missing any. In addition, classes 'I' and 'IO' also had high recall values of 0.98 
and 0.97, indicating that the model was able to find most instances of both 
classes. 

F1‐score is a measure that combines precision and recall in a single 
metric that presents the overall classification performance. A high f1‐score 
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value indicates that the model has a good balance between precision and recall. 
In this evaluation result, all classes have high f1‐score values, with class 'N' 
having the highest value of 1.00, followed by classes 'I' and 'IO' with 0.96 and 
0.97 respectively. This shows that the model performs very well in classifying 
each class with high precision and sensitivity. Thus, the results of this 
evaluation provide confidence that the decision tree model developed is able 
to effectively perform early detection of bearing damage very well.  

Figure 4 shows the visualization of the most important features in the 
decision tree model. Mean, RMS, form factor, and kurtosis are influential 
features in the decision tree model as each provides important insights into 
the characteristics of the underlying data, especially in the context of bearing 
condition prediction. The mean feature has the highest importance score of 
28.01%, serving as the average value of the data that describes the central 
position of the distribution and can indicate normal conditions or changes in 
wear. Small changes in the mean value often indicate significant trends. RMS 
(Root Mean Square) measures fluctuations in the data signal, scoring 22.17%, 
making it particularly useful for detecting increased vibrations that are a sign 
of damage. RMS is responsive to drastic changes, providing important 
information regarding the intensity of variation that can be attributed to 
bearing condition. Form factor, with a score of 12.20%, describes the structure 
or shape of the signal and indicates the stability of the signal; high form factor 
values often indicate disturbances in the signal. Kurtosis, with a score of 
10.64%, measures the sharpness of the data distribution, where high kurtosis 
values can indicate the presence of peaks or significant outliers in the vibration 
signal, being an early signal of damage. The combination of information from 
these features helps the decision tree model to make more accurate decisions 
and provide insight into the patterns and conditions of the underlying data. 
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Figure 4. Visualization of the Most Important Features in the Decision tree Model 

Once the model evaluation is done, the next step is to compare the 
performance of the model with alternative models that may have been 
explored. This comparison helps researchers to understand the relative 
performance of different approaches or algorithms used in solving the same 
problem. By comparing the values of evaluation metrics such as accuracy, 
precision, recall, and f1‐score between different models, it can be determined 
which model provides better performance in solving the problem at hand. In 
this study, 2 comparisons will be made, namely  

 
5.1. Model performance comparison 

Some of the evaluation metrics used to compare model performance 
include accuracy, precision, recall, and f1‐score. By comparing the values of 
these metrics with different models, we can determine which model provides 
better performance in solving the problem at hand. Based on Table 2, it is found 
that the division of the dataset into 50 data frames showed the best evaluation 
results, so the model variation comparison will use the same dataset division. 
Take a look at Table 5 which shows the comparison of the evaluation results of 
the model variations made. 
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Table 5. Model Variation Performance Evaluation Results 
Model Variation Accuracy Precision Recall F1-score 

Decision Tree 94,47% 94,48% 94,47% 94,47% 
Support Vector Classifier 79,24% 81,93% 79,24% 78,93% 
Logistic Regression 73,30% 74,24% 73,30% 72,47% 
RF Classifier 96,50% 96,51% 96,50% 96,50% 
Kneighbors Classifier, 89,93% 89,69% 89,93% 89,72% 

Gaussian NB 56,32% 57,89% 56,32% 53,93% 

Gradient Boosting Classifier 96,22% 96,23% 96,22% 96,22% 

It can be seen in Table 5 that the RF classifier and gradient boosting 
classifier models have higher accuracy than the decision tree model. So it 
needs to be continued by comparing the computation time of the model 
variations that have been made. 

 
5.2. Computation time comparison 

Although the comparison results of other models have better 
performance as shown in Table 5, the decision tree model itself is easy to 
understand and interpret and has faster computation time as shown in Table 
6. 
 

Table 6. Computation Time Comparison of Model Variations 
Model Variation Time (s) 

Decision Tree 0,102 ± 0,007 
Support Vector Classifier 12,31 ± 1,998 
Logistic Regression 0,12 ± 0,016 
RF Classifier 6,55 ± 0,581 
Kneighbors Classifier, 8,16 ± 1,932 
Gaussian NB 0,23 ± 0,006 
Gradient Boosting Classifier 2,01 ± 0,504 

 
Decision tree has the advantage of faster computation time due to the 

simple nature of the algorithm and the fast‐training process. The decision tree 
formation process only involves splitting the data based on the most significant 
features and only involves the formation of one decision tree without the need 
for additional model building as in Random Forest and Gradient Boosting. 
Ultimately, model selection depends on the balance between the need for 
model interpretation, performance, complexity, time, and available resources, 
as well as the specific characteristics of the problem at hand.  

The Decision Tree model achieved high results with an accuracy of 
94.47%, there are several factors that may cause errors in prediction. Firstly, 
the data on certain classes may lack specificity, making it difficult for the model 
to distinguish between similar classes. This data insufficiency may result in the 
model not having enough information to make accurate predictions. Secondly, 
the model may follow the patterns in the training data too closely, leading to 
the phenomenon of overfitting. In this case, although the model performs well 
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on the training data, its performance degrades when faced with unfamiliar 
data. In addition to the above factors, there is also the possibility that the 
complexity of the model does not match the available data. For example, a 
Decision Tree model could be too complex or too simple for the characteristics 
of the dataset. This mismatch can result in errors in classification, especially if 
the selected features are irrelevant or there are important interactions 
between the features that are not captured by the model. Therefore, it is 
important to evaluate the characteristics of the data and the model as a whole.  
To improve the performance of the model, several potential steps can be taken. 
The application of cross-validation can help in evaluating the stability of the 
model and reducing the variance in the results. In addition, performing more 
careful feature selection and hyperparameter tuning can also improve model 
accuracy. By improving feature selection and tuning hyperparameters, it is 
expected that the model can generalize to unseen data and improve accuracy 
in class prediction. 

 
6. CONCLUSION 

The resulting decision tree model is able to determine and classify 
bearings in normal conditions and when they are damaged (inner crack, outer 
crack, ball crack, and a combination of both). Based on the evaluation results, 
the decision tree model produced is reliable in detecting early bearing damage 
according to the data set given with an accuracy percentage of 94.47% with 
the fastest computation time compared to other methods, namely 0.102 ± 
0.007. In the future work, feature selection and a hyperparameter tuning will 
be added to improve the performance of the decission tree algorithm. 
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