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Abstract  
 
Accurate and timely detection of kitchen fires is crucial for enhancing 
safety and reducing potential damage. This paper discusses 
comparative analysis of two cutting-edge object detection models, 
YOLOv5s and YOLOv8s, focusing on each performance in the critical 
application of kitchen fire detection. The performance of these models 
is evaluated using five main key metrics including precision, F1 score, 
recall, mean Average Precision across various thresholds (mAP50-95) 
and mean Average Precision at 50 percent threshold (mAP50). Results 
indicate that YOLOv8s significantly outperforms YOLOv5s in several 
metrics. YOLOv8s achieves a recall of 0.814 and an mAP50 of 0.897, 
compared to YOLOv5s' recall of 0.704 and mAP50 of 0.783. 
Additionally, YOLOv8s attains an F1 score of 0.861 and an mAP50-95 
of 0.465, whereas YOLOv5s records an F1 score of 0.826 and mAP50-
95 of 0.342. However, YOLOv5s shows a higher precision of 0.952 
compared to YOLOv8s' 0.914. This detailed evaluation underscores 
YOLOv8s as a more effective model for precise fire detection in kitchen 
settings, highlighting its potential for enhancing real-time fire safety 
systems. Additionally, by offering the future work of integration of 
sensors with latest YOLO involvement can further optimize efficiency 
and fast detection rate.  

  
Keywords: Convolutional neural network, Deep learning, Kitchen fire 
detection, Performance metrics, YOLO  

  
 

1. INTRODUCTION  
To protect materials and maintain safety, fire detection is essential in 

indoor environments especially kitchens. Cooking appliances [1][2], 
flammable materials [3] and heat sources [4] usage are particularly vulnerable 
to kitchen fire occurrences [5]. The National Fire Protection Association 
(NFPA) reported that one of the main causes of house fires and injuries in the 
United States is the cooking appliances [3]. Rapid and precise fire detection in 
kitchens can save fatalities, minimize property damage, and prevent injuries. 
However, since smoke and steam are frequent byproducts of cooking activites 
[6][7], conventional fire detection devices such as smoke detectors have 
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difficulties in accurately detecting fires. Recent developments focusing on 
vision-based approaches that use Convulational Neural Networks (CNN) for 
real-time fire detection situations in order to overcome these difficulties. The 
You Only Look Once (YOLO) architecture has demostrated great result in 
object identification [8] due to its high accuracy and speed [9][10], making it 
ideal for real-time applications [11] [12]. 

This article aims to address this need by comparing the performance of 
two widely used architectures, the YOLO model using YOLOv5s and YOLOv8s, 
particularly in kitchen settings. The objective is to evaluate each model’s 
feasibility for practical implementation in fire-prone indoor environment such 
as kitchens.  
 
2. RELATED WORKS 

In deep learning models, the YOLO based one-stage detection technique 
bypasses the region extraction step and instead solves the detection issue as a 
regression problem. This allows for the immediate extraction of the target’s 
location and class information from the images, as opposed to the two-stage 
algorithm. The first YOLO model was introduced by Redmon et al. [13]; 
however, despite this, it has a very low recall value and precision of detection. 
In order to address the problems with the earlier version and enhance the 
speed and efficiency of the detection, the YOLOv2 [14] and YOLOv3 [15] 
models were introduced. Bochkovskiy [16] introduced YOLOv4, which has 
greatly enhanced the accuracy of the detection model. Later that year, Jocher 
[17] presented the YOLOv5 model, a more lightweight network with a 
minimum size of 2.62 MB built on the Pytorch framework. YOLOv5 surpasses 
YOLOv4 in both inference speed and detection accuracy, achieving rapid 
detection at 140 frames per second on Tesla P100. YOLOv6 [18] was then 
released in June 2022 to achieve the objective of creating an object detector 
used in the industry scale. In the following month of 2022, the YOLOv7 by 
Wang et al. [19] was released which suggested a number of architectural 
reforms to maintain high detection speed while enhancing accuracy. Next 
version of YOLOv9 [20] was released in early of year 2024 adding new 
approaches such as Programmable Gradient Information (PGI) and the 
Generalized Efficient Layer Aggregation Network (GELAN). 

Improvised of YOLO architecture has been made in numerous of 
research fire imaging detection. Fire-YOLO [21] used an improvement of 
YOLOv3 with added network of hollow convolution and DenseNet to enhance 
early detection of small-scale flames. A lightweight CNN network model 
designed specifically for ship fire detection [22] is made from modified 
YOLOv4 algorithm despite the constrained computational resources availbility 
in maritime settings. Similarly to a new lightweight model ES-YOLO [23] 
produced from improvement of YOLOv5s with replacement of EfficientNetv2 
network and SioU loss function able to reduce the computational complexity 
and improves the speed and detection acuracy. Few studies present a fire 
detection model utilizing traditional machine learning method rather than 
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deep learning approaches such as [24] and [25]. Summary of related works 
shown in Table 1. 

 
Table 1. Summary of Related Works 

Author Models used Dataset Performance 
Metrics 

Findings 

[21] Fire-YOLO Public 
websites 

Precision: 91.50% 
Recall: 59.62% 
mAP: 80.23% 

Enhances feature 
propagation of fire 
small targets 
identification, 
improve network 
performance and 
reduce model 
parameters 

[22]  Modified 
YOLOv4-tiny 
algorithm 

Homemade 
ship fire 
dataset 

Precision: 0.928 
Recall: 0.875 
mAP: 0.906 

Ship fire detection 
accuracy and 
detection efficiency 

[23] ES-YOLO PASCAL 
VOC2007 
dataset 

mAP:20% 
improvement, 
15% recall 
improvement of 
YOLOv5s 

Lightweight and 
real-time fire 
detection with 
improved accuracy 

[24] Gaussian 
process 
classification 

Open 
sources 

Prediction above 
90% 

Achieve a high 
correct detection 
probability when 
the training images 
are either adequate 
or inadequate 

[25] Support 
Vector 
Machine 
(SVM) 

Bilkent 
University, 
Signal 
Processing 
Lab 

Accuracy: 93.33% 
 

Precision and 
detect faster real-
time fire detection. 

 
3. ORIGINALITY 

Despite the promising capabilities of object detection models for fire 
detection, there remains a deficiency of comparative research among different 
YOLO architectures specifically for kitchen fire detection. The majority of 
research has concentrated on assessing a single model separately. Previous 
comparison-based studies have tended to focus on a limited number of 
techniques or less sophisticated models. Moreover, a thorough evaluation of 
the performance indicators and detection capabilities unique to fires has been 
absent. This paper presents a comprehensive comparison research focused on 
the systematic evaluation of YOLOv5s and YOLOv8s for kitchen fire detection. 
The paper highlights the potential benefits and practical implications of new 
image processing techniques and Internet of Thing (IoT) integrations, 
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providing the most comprehensive comparative review of contemporary 
YOLO algorithms for fire detection applications. 

 
4. SYSTEM DESIGN  

The YOLOv5s and YOLOv8s architectures were used in this research. 
Both models were trained using Google Colab, utilizing the NVIDIA Tesla T4 
GPU with 16-GB of RAM and CUDA version 12.2. The Tesla T4’s outstanding 
performance and economical power consumption is appropriate for deep 
learning task. Low GPU memory usage (3 MiB) during startup with nvidia-smi 
monitoring both GPU utilization and memory usage, suggesting a cost effective 
method for training. The efficiency of cloud-based resources for this 
application was demonstrated by running 50 epochs with a batch size of 16. 

 
4.1 Data Source 

The custom dataset of kitchen fire images used in this study being 
uploaded in a website Roboflow, a platform for managing and augmenting 
image datasets. The link to dataset can be viewed from 
https://universe.roboflow.com/fire-detection-t00kz/indoor-fire-toktd. The 
custom dataset comprises images specifically curated for kitchen indoor fire 
detection, ensuring relevance to the study's objective. A total of 137 images are 
utilized for training both YOLOv5 and YOLOv8 architectures, with an 
additional 39 images reserved for model validation. All image sizes were 
adjusted to 640x640 pixels to meet the input requirement during dataset 
preprocessing. The selection of dataset and partitioning strategy is to offer a 
varied and representative sample for assessing the performance of the object 
detection models.  

 

 
 

Figure 1. YOLOv5 architecture [22] 
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4.2 YOLOv5 
One object detection algorithm technique that is popular for its 

reliability, simplicity and accuracy [8] is called You Only Look Once version 5, 
or YOLOv5. The YOLOv5 [18] was released by Ultralytics in mid of the year 
2020 and consists of three foundations: backbone, neck and head, as shown in 
Figure 1. 

The backbone depends on the CSP-Darknet53 convolutional network 
and employs the Cross Stage Partial (CSP) strategy to expedite information 
flow while alleviating issues linked to redundant and vanishing gradients 
[24][25]. A version of the Spatial Pyramid Pooling (SPP) is incorporated into 
the neck of the YOLOv5 model, and the Bottle-NeckCSP is integrated into the 
Path Aggregation Network (PANet) [26]. Combination of these techniques 
improves the receptive field in order to retain the network speed by separating 
important context features. The CSPNet strategy [25] improved the PANet in 
YOLOv4 as a feature pyramid network, to provide a better pixel localization 
accuracy in YOLOv5. The neck of the architecture is crucial in order to manage 
object scaling and allow the model to perform remarkably well on unobserved 
data.  

The head of YOLOv5 is made up of three convolution layers similar to its 
predecessors [25]. These layers, which differ slightly from the preceding 
versions in the computation of target coordinates for bounding boxes, predict 
coordinates of bounding box, score and object classification [25] [27]. 

According to Johnston et al. [8], there are four different levels of neural 
network models in YOLOv5, from simplest to most complex including 
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. With the help of an effective 
inference strategy and a lightweight network architecture, YOLOv5s built on a 
single-stage detector that enables quick and precise object recognition [28]. 
Based on the demand for quick, small model and high precision, YOLOv5s is 
selected as the model to be used in this paper. 

 
4.3 YOLOv8 

In January 2023, Ultralytics introduced YOLOv8 [29] which represents a 
remarkable breakthrough in the object detection area, image recognition as 
well as instance segmentation. To accomplish these features, YOLOv8 
essentially upgrades YOLOv5 [30]. Similar to YOLOv5, YOLOv8 is made up of 
three primary architectural components: the head, neck and backbone. Figure 
2 illustrates the structure of the YOLOv8: the head performs object 
identification and classification prediction, the neck combines image frames 
featured by the backbones. The adoption of an anchor-free model by YOLOv8, 
which differs from the anchor-box technique used in previous YOLO models, 
is one of its most notable aspects [31]. This change enables the model to 
accurately predict an object’s centre without the hustle of anchor boxes such 
as inability to handle irregularities and lack of generalization. Reducing the 
quantity of box predictions enables the YOLOv8 model to expedite the speed 
of the Non-Maximum Supression (NMS) process, the critical post-processing 
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step in charge of sifting through candidate detections following interference 
[30] [32]. 

YOLOv8s has a more complex architecture with 168 layers and 
11,126,425 parameters, while YOLOv5s has 182 layers and 7,251,912 
parameters. High parameters in YOLOv8s indicate that it may require more 
computational resources during training. This also include more memory 
(RAM) to load and execute which require powerful processors [30]. 
 

 
 

Figure 2. YOLOv8 architecture [31] 
 

4.4 Evaluation Metrics 
The confusion matrix depicted in Figure 3 is employed for evaluating the 

performance of a model. This matrix, described by Zeng [33], displays the 
relationship between actual and predicted classifications. The confusion 
matrix comprises four classifications such as True Negative (TN), True Positive 
(TP), False Negative (FN), and False Positive (FP) based on actual and 
predicted values. The meaning of each classification such as TP represents the 
total number correctly identified as positive samples; TN represents the total 
number of correctly classified as negative samples; FP denotes the number of 
incorrectly classified positive samples while FN represents incorrectly 
predicts the negative class [34].  

 

 
 

Figure 3. Confusion matrix 
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4.4.1 Precision 
Fundamental evaluation metric in object detection is precision. The 

accuracy of the model’s positive prediction was measured using precision 
[35][36][37]. Equation 1 represents the precision level,  where TP is the total 
of correctly predicted positives and FP is the number of false positives. Less 
false positives indicate the model is high precision or high accuracy. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (1) 

 
4.4.2 Recall 

Recall was used to measure the ability of selected models for accuracy 
detection for all instances of fire [38]. A higher recall value means the model is 
less likely to miss any fires. It is also defined as the ratio of TP to the total 
number of actually positive instances [36][37]. Recall is determined as in 
Equation (2) which represents the number of correctly predicted positive 
instances, where FN refers to negative instances.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

 
4.4.3 F1 Score 

The F1-score is a combination of the value of precision and recall 
extending an analysis of the model’s accuracy [38]. The F1-score shown in 
Equation (3)[39] serves as the ratio of both product of precision and recall 
with multiplication of 2. The best value of F1-score is 1.0 while the worst is 0.0. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 
4.4.4 Mean Average Precision 

The Mean Average Precision (mAP) measures the balance between 
precision and recall values. To achieve this, firstly the Average Precision (AP) 
is computed for each class and finalized with averaging across all classes [35]. 
By calculating the area under the precision-recall curve, AP measures 
precision at different levels of recall values [40]. Equation (4) shows precision 
at specific recall level. Considering both precision and recall, a higher mAP 
denotes better object detection performance [35][36]. 
 

 𝐴𝑃 =  ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑅𝑒𝑐𝑎𝑙𝑙)𝑑 (𝑅𝑒𝑐𝑎𝑙𝑙)
0

1
= 𝑎 ∫ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑟)𝑑𝑟 (4) 
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5. EXPERIMENT AND ANALYSIS  
 
5.1 Inference Speed and Computational Performance 
 Both model runs at different inference speed. YOLOv8s processes images 
at 4.8 ms per image while YOLOv5s processed slightly slower with 5.5 ms per 
image. The improvement shown in YOLOv8s model despite its complex 
architecture demonstrates faster inference speed resulting in optimized layers 
and operations. However, the YOLOv8s with high processing power 
requirements will required a powerful and expensive hardware setup. Despite 
being a little more computationally intensive, YOLOv8s can provide real-time 
applications a significant benefit due to its higher inference speed. 
 
5.2 Performance evaluation 

Further evaluation was made for both types of YOLO test. The 
identification of results in terms of the TP, TN, FP and FN for both fire and 
smoke was displayed in the confusion matrix in Figure 4. Based on our 
analysis, there is a slightly large variance that performed from each model. For 
instance, in YOLOv5s and YOLOv8s, the percentage of true positive value is 
0.74 and 0.88 respectively.  Therefore, an average true positive value for fire 
was 0.81. For smoke in YOLOv5s, the positive value is 0 while for YOLOv8s, 
true positive rate of 0.71 with 0.29 being incorrectly classified as background. 
The result is lower for smoke classification because both models unable to 
detect correctly between smoke and background images. Despite this, the 
results indicate that additional development is necessary and provide 
satisfactory performance outcomes first several model approaches towards 
both database and models to raise high real-time true positive values for 
application in kitchen and indoor environment.  

 

 
 

Figure 4. Confusion matrix of (a) YOLOv5s and (b) YOLOv8s based on testing 
images 

 
The precision-confidence curves for both YOLOv5s and YOLOv8s in 

Figure 5 provide critical insights into their performance in detecting kitchen 

(a) (b) 
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fires. YOLOv8s displays a smooth, steadily rising indicates a consistent 
improvement in precision as confidence increases. This model achieved 
perfect precision (1.00) at a confidence level value of 0.709 denoting it can 
accurately classify fire instances with lower false positives at lower confidence 
threshold. Meanwhile, the model YOLOv5s precision reaches 1.00 at a lower 
confidence threshold of 0.468 suggesting that the model at lower confidence 
level enable to achieve high precision but may faces challenges with precision 
consistency as confidence increases. The curve initially shows a steeper rise 
but it levels off, determine that YOLOv5 may generate more false positives at 
moderate confidence levels. 

 

 
(a) 

 
(b) 

 

Figure 5. Precision-confidence curves of (a) YOLOv8s and (b) YOLOv5s  

 
Results in Figure 6 shows that YOLOv5s has significantly higher precision 

value of 0.952 compared to YOLOv8s with value of 0.914, indicating that 
YOLOv5s is more accurate in correctly identifying the objects it detects. 
mAP50 values for both models show a significant difference indicating a 
substantial improvement in detection accuracy of YOLOv8s over YOLOv5s. 
Meanwhile for mean Average precision (mAP50-95) to indicate how well the 
models are performing across different thresholds, YOLOv5s has a lower 
mAP50-95 of 0.342 compared to YOLOv8s. The higher mAP50-95 score 
indicates better overall performance compared to YOLOv5s, suggesting 
improvements in model architecture or training. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Performance matrics of YOLOv8s and YOLOv5s 
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To explain further about mAP performance based on Figure 7 for 
YOLOv5s model using two different metrics of mAP50 in Figure 7(a) and 
mAP50-95 in Figure 7(b). The mAP50 metric measures precision when the 
overlap between predicted and actual boxes is at 50 percent. It starts at 0.1 
and increases to 0.78 over 50 training epochs. This means better detection as 
training progresses. Meanwhile the mAP50-95 metric measures precision 
over a range of overlaps from 50 to 95 percents, Figure 7(b) shows precision 
starts near zero and increases to around 0.34. There is an improvement but at 
a lower rate due to limitation of evaluation criteria. 

 

 
(a)                                              (b) 

Figure 7. YOLOv5s graphs: (a) mAP50 (b) mAP50-95 

 
Figure 8 illustrates the performance of YOLOv8s model using the same 

metrics. The mAP50 in Figure 8(a) starts at 0.3 and increases sharply to the 
value of 0.80 within 10 epochs then gradually reaches 0.9 by 50 epochs. These 
results indicate fast and sustained improvement in detection accuracy. The 
mAP50-95 in Figure 8(b) starts at above 0 and increases to about 0.45 by 50 
epochs. There is a significant improvement across different overlap levels 
surpassing YOLOv5s model.  

 

 
(a)                                                (b) 

Figure 8. YOLOv8s graphs: (a) mAP50 (b) mAP50-95 
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Recall value in Figure 6 for YOLOv5s model is 0.704 to indicate that this 

model is able to detect about 70.40% of all actual objects in the images while 
for YOLOv8s is much better at detecting objects, finding 81.40% of all actual 
objects. Figure 9 and Figure 10 show the results of applying the kitchen fire 
images training detection using YOLOv5s and YOLOv8s models. 

 

 
 

Figure 9. Example snapshot of detection using YOLOv8s 

 

 
 

Figure 10. Example of snapshot of detection using YOLOv5s 

 
 

6. CONCLUSION 
This study carried out a comparative analysis of YOLOv5 and YOLOv8s 

for fire detection in kitchen environments to evaluate their performance. The 
results displayed according to the five important performance metrics; 
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mAP50, mAP50-95, F1 Score, Precision and Recall. The result shows that 
model YOLOv5s achieves high precision than YOLOv8s, proving fewer false 
positives in detection. Both models have successfully detected fire and smoke 
in the kitchen environment. YOLOv8s integrates several architectural 
improvements than YOLOv5s, which include more effective feature extraction 
layers, improved backbone networks, and improved object detection head 
designs. These innovations increase the accuracy of object localization and 
classification. Based on the findings of this comparative study between 
YOLOv5s and YOLOv8s, our future research is to further enhance the 
performance and applicability of object detection models such as focus on 
refining the algorithms used for kitchen fire detection with challenging 
environment with varying lighting and reflection for confusing detection. 
Besides, exploring the integration of additional sensors to increase the 
accuracy and fast detection tasks. Combining sensor data with visual data from 
cameras can provide a richer set of information in making more reliable 
detections and decrease false alarms. Future work could explore the 
underlying architectural differences contributing to these performance gains 
and assess the models' effectiveness across diverse datasets and real-world 
applications. 
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