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Abstract  
 
Preprocessing is a widely used process in deep learning applications, 
and it has been applied in both 2D and 3D computer vision 
applications. In this research, we propose a preprocessing technique 
involving weighting to enhance classification performance, 
incorporated with a 3D CNN architecture. Unlike regular voxel 
preprocessing, which uses a zero-one (binary) approach, adding 
weighting incorporates stronger structural information into the 
voxels. This method is tested with 3D data represented in the form of 
voxels, followed by weighting preprocessing before entering the core 
3D CNN architecture. We evaluate our approach using both public 
datasets, such as the KITTI dataset, and self-collected 3D human 
orientation data with four classes. Subsequently, we tested it with five 
3D CNN architectures, including VGG16, ResNet50, ResNet50v2, 
DenseNet121, and VoxNet. Based on experiments conducted with this 
data, preprocessing with the 3D VGG16 architecture, among the five 
architectures tested, demonstrates an improvement in accuracy and a 
reduction in errors in 3D human orientation classification compared 
to using no preprocessing or other preprocessing methods on the 3D 
voxel data. The results show that the accuracy and loss in 3D object 
classification exhibit superior performance compared to specific 
preprocessing methods, such as binary processing within each voxel.  
 
Keywords: 3D CNN, Weighted, Voxel, Human Orientation, 
Classification 
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1. INTRODUCTION  
Object classification is one of the critical challenges in object detection 

within a scene. This scene typically consists of data captured by sensors in the 
surrounding environment. Object classification studies have primarily focused 
on image-based computer vision applications. However, the advancement of 
3D sensor technologies has shifted the paradigm from 2D to 3D data 
processing, giving rise to new research opportunities in 3D data processing. 
3D data processing finds broad applications in fields such as robotics, 
autonomous vehicles, 3D medical imaging, military applications, augmented 
reality, and remote sensing[1–5]. 3D data differs in structure and offers 
distinct advantages when compared to 2D data. With 3D data, computer vision 
capabilities are significantly improved as it provides depth information and 
rich geometric details[6–8]. Although it is possible to convert 2D images into 
3D, this often results in errors in perceiving and understanding the 
surrounding environment, negatively impacting system performance. 
Additionally, lighting conditions, particularly in fluctuating bright and dark 
environments, can impact the quality of 2D image data. In contrast, 3D data, 
with its inherent z-axis component, is more robust. However, the challenge 
with 3D data lies in its scattered nature, requiring appropriate methods to 
make sense of the data it forms. Moreover, the vast amount of 3D data 
necessitates techniques to reduce excessive computational requirements. 

One common representation of 3D sensor data is the point cloud. Point 
clouds are widely favored for 3D data processing in various applications, 
including robotics, autonomous vehicles, and military domains[3,5]. Other 
representations include mesh[9] and voxel data[10], which also capture data 
from 3D sensors[11–13]. However, point cloud data has an extensive footprint 
and requires decomposition processes to simplify the representation and 
reduce data size to prevent high computational demands. Voxel data, on the 
other hand, offers a more structured 3D data format, summarizing large data 
volumes by grouping sets of points into individual voxels. 
 
2. RELATED WORKS 

Research on human orientation estimation has become a focal point of 
interest for researchers. Several studies have been centered on the 
development of sensor utilization and the implementation of deep learning 
algorithms to achieve significant orientation estimation. Various variations in 
sensor usage, features, and deep learning architectures, especially 
Convolutional  Neural Networks (CNNs), have been employed to enhance 
robust orientation estimation methods. The use of radar sensors, as observed 
in this study[14], involves predicting human orientation by monitoring body 
respiration movement to identify the direction of the human body. While radar 
can provide rapid estimates, its limitation lies in its inability to provide the 
necessary detailed information. Therefore, a robust method is required to 
generate meaningful information.Other studies have attempted to develop 
methods utilizing wearable devices[15–17] placed on various parts of the 
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human body. However, this approach may be less flexible as it often requires 
numerous sensors. One commonly used sensor is the RGB camera[18–20]. 
Nevertheless, cameras often face challenges related to changes in light 
intensity and the limitation of spatial information, which is two-dimensional. 
Hybrid approaches have also been used to achieve improved estimation by 
combining data from 2D LiDAR sensors and cameras. However, this approach 
requires significant data and computational resources for processing. An 
approach that has not been extensively explored is the utilization of a single 
type of sensor, such as a 3D LiDAR sensor. This sensor possesses vital 3D 
spatial and geometric elements, with the expectation of achieving more 
accurate predictions of human body orientation.  
 
3. ORIGINALITY 

Various approaches have been explored for estimating human orienta-
tion, involving deep learning methods encompassing preprocessing 
techniques, layer architectures, and the use of relevant datasets. We propose a 
preprocessing  method combined with a CNN architecture to enhance the 
classification results for several publicly available and frequently used 
datasets, as well as our primary data. The preprocessing involves weighting on 
voxelized point cloud data, where each voxel carries a unique weight value to 
reinforce features before entering the deep learning CNN architecture. The 
CNN architecture is implemented  VGG16, known for its advantages in voxel 
data classification, as indicated in previous research on orientation prediction 
comparing various CNN architectures[21]  as seen in Figure 1.  

 

 
Figure 1. Estimating the direction or motion orientation of a human using 3D LiDAR 

data 
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The weighting approach draws inspiration from previous research[22] 
used in the 3D object reconstruction process from point cloud data. Our study 
on 3D human orientation estimation is related to classification since we divide 
the dataset into various orientation classes based on point cloud data. Based 
on several references, classification can indeed be divided into two categories: 
discrete classification and continuous regression for 3D human orientation 
estimation[23]. 

 
4. SYSTEM DESIGN 

The proposed method in this paper is a combination of preprocessing 
techniques that apply weighting to 3D voxel objects and process them for 
classification using deep learning and 3D CNN. The initial input data is a 3D 
object in the form of a point cloud, which will be converted into voxel format 
with dimensions of 16x16x16, a process commonly known as 3D data 
voxelization in Figure 2. The voxelization is not represented as binary values 
as commonly done but instead as weighted values. 

 
Figure 2. Representation of 3D Human object in voxel form 

 
4.1 Weighted Voxel 

Unlike other voxels, which take the value 0 for parts containing points 
below a threshold or 1 for voxels containing many points above the threshold, 
the weighted method was introduced in previous research on 3D object 
reconstruction[22], forming the voxel representation values as integers. In 
conventional voxels, each voxel is independent of the others, leading to a loss 
of structural information. In this weighting approach, the final reconstruction 
from the voxelization process is used to address the issue of inter-neighbor 
voxel information relationships, also contributing to the formation of new 
features based on voxel relationships. To achieve this, we employ a 3 × 3 × 3 
filter convolved over the conventional binary voxels as seen the following 
Figure 3. 
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Figure 3. The process of generating weighted voxels involves convolution using a 

3x3x3 kernel or filter on the binary- voxels 

 
Based on Figure 3, the calculation of voxel weight values can be 

performed using the following equation (1). 
 

𝑦(𝑖,𝑗,𝑘) = −𝜔(−1)𝑣(𝑖,𝑗,𝑘) − ∑ ∑ ∑ (−1)𝑣(𝑚,𝑛,𝑝)𝑘+1
𝑝=𝑘−1

𝑗+1
𝑛=𝑗−1

𝑖+1
𝑚=𝑖−1           (1) 

 
Where 𝑣(𝑖,𝑗,𝑘) ∈ {0,1}  is denoted as the value of conventional voxels, and 𝜔 

is set to a value of 26. Specifically, we define that voxels with a value of zero 
are transformed into negative values in Weighted Voxels. Conversely, positive 
values in Weighted Voxels are derived from voxels with a value of one in 
conventional voxels. Furthermore, higher values in Weighted Voxels indicate 
higher density within the 3D object, while lower values denote lower density. 
Compared to conventional voxels, Weighted Voxels provide richer 
information, facilitating subsequent reconstruction steps. Set 𝑣(𝑖,𝑗,𝑘)| = 0 when 
𝑖 = −1, 𝑗 = −1, 𝑘 = −1. 

 
4.2 3D Convolution 

3D convolution is a step to extract features from both spatial and 
temporal information. 3D convolution is performed by convolving a cube-
shaped 3D kernel, combining several adjacent frames. With this construction, 
new feature maps are generated when the convolution process is connected to 
several consecutive frames in the previous layer, capturing information from 
the 3-dimensional movement of the kernel. The equation for 3D convolution 
with values at position (𝑥, 𝑦, 𝑧) in feature map -𝑗 in the i-th frame layer is given 
by. 

 

𝑣𝑖𝑗
𝑥𝑦𝑧

= 𝑡𝑎𝑛ℎ(𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

𝑣(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)𝑅𝑖−1

𝑟=0
𝑄𝑖−1
𝑞=0

𝑃𝑖−1
𝑝=0𝑚 )                 (2) 

 
𝑅𝑖is denoted as the size of the 3D kernel in the temporal dimension, and 

𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

 is the value (𝑝, 𝑞, 𝑟) of the kernel connected to feature map k in the 

previous layer. An illustration of 3D convolution is provided in Figure 4. It 
should be noted that the 3D convolution kernel can only extract one type of 
feature from the frame cube because the kernel weights are replicated across 
the entire cube. A typical design principle in CNNs is that the number of feature 
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maps should increase in the later layers by extracting various types of features 
from the same set of lower-level feature maps. 

 
Figure 4. 3D Convolution Step Process 

 
4.3 3D Convolutional Neural Network Architecture 

CNN has various variants that have been developed based on previous 
research studies. The proposed method employs the VGG16 architecture, 
referring to a study[21] that demonstrated VGG16's superior performance 
compared to other architectures, such as Resnet and DenseNet, in the 
orientation classification process using regular binary voxel data, containing 
values 0 and 1. This served as the basis for our combination with 
preprocessing that utilizes weighting on voxel data to enhance the 
classification performance, which was not present in the pure data voxel used 
in the previous research. However, VGG16 is typically designed and used for 
2D data. In this case, we have modified it to take the form of a 3D CNN and have 
adjusted some parameters in the fully connected layer, which differ from the 
original VGG16, as shown at Figure 5. These modifications are shown in Table 
1. 
 

 
Figure 5. The proposed architecture 

 
This research aims to apply Convolutional Neural Network (CNN) 

architecture in classifying human orientation based on 3D Point Cloud data. 
Deep learning research using Point Cloud data has involved various 
architectures with the goal of achieving reliable results. The main proposed 
architecture includes the addition of weighted voxel conversion at the 
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beginning before entering several CNN architectures. In this study, we will test 
five different CNN architectures with both the public KITTI dataset and our 
dataset. These datasets have undergone feature extraction from raw Point 
Cloud data and will be used for architecture performance comparisons. The 
five CNN architectures to be evaluated are VGG16, Resnet50, Resnet50v2, 
DenseNet121, and VoxNet, aiming to obtain the best architecture for 
orientation estimation with weighted voxel combination. 

Table 1. Layer Modifications in Each Evaluated Architecture 

Modified VGG16 ResNet50 ResNet50v2 DenseNet1
21 

VoxNet 

Input (224,224,
3)  
 

(16,16,16,
1) 

(224,224,3)  
  

(16,16,16,1) 

(224,224,3)  
   

(16,16,16,1) 

(224,224,3)  
  

(16,16,16,1) 

Not 
Modifie

d 

Convolutio
n 

Conv2D  
   

Conv3D 

Conv2D  
   

Conv3D 

Conv2D  
   

Conv3D 

Conv2D  
   

Conv3D 
Maxpooling Maxpoolin

g 2D 
  

Maxpoolin
g 3D 

Maxpooling 
2D 
   

Maxpooling 
3D 

Maxpooling 
2D 
  

Maxpooling 
3D 

Maxpooling 
2D 
  

Maxpooling 
3D 

ZerroPaddi
ng 

- ZerroPaddin
g 2D  
  

ZerroPaddin
g 3D 

ZerroPaddin
g 2D  
  

ZerroPaddin
g 3D 

ZerroPaddi
ng 2D  
  

ZerroPaddi
ng 3D 

Depthwise 
Convolutio
n 

- DepthwiseCo
nv 2D 
 

DepthwiseCo
nv 3D 

DepthwiseCo
nv 2D 
 

DepthwiseCo
nv 3D 

- 

 
VGG16 is one of the architectures developed that is consists of 13 

convolution layers, with max-pooling layers interspersed between each 
convolution layer. After feature extraction, the data enters three fully 
connected neural network layers and ends with a softmax layer for 
classification. Resnet is known as a deep network that leverages the concept of 
residual layers to improve classification accuracy. ResnetV2, a variant of 
Resnet, combines residual layers with batch normalization to enhance 
performance compared to the previous Resnet. On the other hand, Desnet is a 
deep network with 56 layers that use padding on each layer and utilize 
instance normalization as an alternative to batch normalization. Desnet 
implementation has been proven to significantly improve image classification. 
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All architectures have been modified into 3D CNNs to process input data 

in voxel format in three-dimensional space. The convolution layers, which are 
the core elements of each architecture, have been adapted into three-
dimensional kernel layers to handle the characteristics of 3D point cloud data. 

 
5. EXPERIMENT AND ANALYSIS 

In this section, we will explain the dataset base used in the testing for 3D 
object classification, particularly human orientation. In the following 
explanation, we will present the detailed implementation of the proposed 
method, which includes system parameters set for testing. Furthermore, we 
will discuss the experimental results compared to previous approaches. It is 
essential to note that the results being compared are as reported by the 
authors in the respective papers. 
 
5.1 Datasets 

In this experiment, we employed two dataset options: a public dataset 
and our self-created primary dataset. The public dataset used is the KITTI 
dataset[24] for 3D LiDAR data of human individuals. This public dataset is 
often utilized to compare the performance of various architectures for various 
3D object functions. Additionally, we utilized our self-collected primary 
dataset using LiDAR sensors to classify human orientation into four categories.  

Table 2. The number of public and our datasets used in the experiments 

Dataset Class Total Training Testing 

KITTI Dataset 

North 40 31 8 
South 54 43 11 
West 68 56 12 
East 300 66 16 

Our Dataset 

North 365 250 115 
South 250 150 100 
West 270 200 70 
East 300 250 50 

 
We used a manual cropping method to obtain human data and clean 

other data in the surroundings captured by the LiDAR sensor, both in the 
public dataset and our dataset. The number of datasets from each source is 
presented in Table 2, and Figure 6 illustrates how the dataset is categorized 
into four orientation classes: North, South, West, and East, based on the 3D 
LiDAR positions, as explained in the previous introduction section. 
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Figure 6. Categories of 3D Point Cloud Human Orientation 

 
5.2 Implementation Details 

Our experiments were conducted using the Ouster LiDAR sensor with 32 
channels for data collection, and we utilized the NVIDIA Tesla T4 GPU available 
on the Kaggle cloud platform for the learning process, which provides free but 
limited access. We implemented the neural network using the TensorFlow-gpu 
API V2.11.0, along with several supporting libraries in the Python platform. 
We applied the one-cycle learning rate policy during the training process, with 
the training cycle set to 50 epochs. Additionally, we configured the learning 
rate to be 0.0001 and the batch size to be 10. We also employed 5-fold cross-
validation. Due to the dataset's class imbalance, we used the Synthetic 
Minority Over-sampling Technique (SMOTE), a popular method for balancing 
data. This technique synthesizes new samples from the minority class to 
balance the dataset by creating new items from the minority class with the 
formation of convex combinations of nearby items. 

 
5.3 3D Human Orientation Classification 

In this study, we first evaluated human orientation classification using 
several CNN architectures: VGG16, ResNet50, ResNet50v2, DenseNet121, and 
VoxNet[25]. We employed two types of point cloud conversion into voxel 
format: the first type with binary voxels, where filled voxels are assigned a 
value of 1 and empty voxels a value of 0. The second type is weighted voxels, 
where we used values ranging not only between 0 and 1 but also specific 
integer values, including negatives and positives, to provide integer values to 
the voxels. This testing represents an extension of previous research that 
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involved only four CNN architectures with binary voxels. In the previous 
research, VGG16 outperformed the other three architectures in terms of 
accuracy and loss. Furthermore, this time, we added a comparison with 
another new architecture, VoxNet, which is a voxel-based architecture often 
used for comparisons. 

 
The purpose of using weighted voxels is to enhance the performance of 

CNN architectures, especially for human orientation estimation using point 
cloud data. We present a comparison between binary voxels and weighted 
voxels for the specified architectures in the form of confusion matrices for 
testing the classification of four orientation classes. The classification tests 
were conducted by comparing two datasets to determine how robust the 
architectures are to different data, significantly when their performance is 
enhanced with the addition of weighted voxels. Based on Table 3 and Table 4, 
the approach of adding weighted voxels to each architecture outperforms the 
use of binary voxels in CNN architectures. The confusion matrix results show 
that the top two, VGG16 and DenseNet12, have high average classification 
success rates for each class. This is evident from the dominant colors forming 
diagonal patterns, indicating better accuracy compared to the other three 
architectures. Interestingly, there is a different outcome for the VoxNet 
architecture, which experiences a decrease in classification performance when 
using weighted voxels. However, an overall observation shows that the use of 
weighted voxels actually improves orientation classification performance in 
every architecture except for VoxNet. 

 
Table 3. Comparison of results between binary voxels and weighted voxels 

combined with CNN architectures using confusion matrices on the public KITTI 
dataset 

 
Based on training data from the KITTI dataset for each class, including 

North, South, West, and East, we observed that ResNet50 has a very low 
success rate for each class compared to the other architectures. For the binary 
voxels, the success rates are as follows: North 18.6%, South 17.8%, West 
29.2%, and East 44%. Similarly, with weighted voxels, although there is an 
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improvement in three classes, the success rates remain low North 25.4%, 
South 19%, and West 29.8%. In contrast, ResNet50v2 shows an average 
increase of 5.1% in success rates for each class using the KITTI training data. 
For the VGG16, DenseNet121, and VoxNet architectures, there are difficulties 
with the North class, which actually experiences a decrease in success rate 
with the addition of weighted voxels. However, the other classes show 
improvement, which positively affects the overall classification success rate. 
Furthermore, when comparing these results with our own collected data, the 
success rates for each class in each architecture exhibit similar characteristics 
to those observed with the public dataset. 
 

Table 4. Comparison of results between binary voxels and weighted voxels 
combined with CNN architectures using confusion matrices on our self-acquired 

dataset from the 3D LiDAR sensor 

  
Upon evaluating all architectures, it is clear that ResNet exhibited the 

lowest classification results for each class in this particular scenario. We also 
provide performance results in terms of accuracy and loss, based on the 
evaluation during training, using two different datasets: the KITTI dataset and 
our dataset. Upon reviewing Tables 5 and 6, a noticeable trend is the significant 
improvement in accuracy and reduction in loss for each architecture. However, 
in the case of the VoxNet architecture, the results differ with the addition of 
weighting, which, surprisingly, can negatively impact performance. The 
VoxNet architecture is considerably more straightforward than the other 
architectures and has fewer parameters, which might result in faster training 
computations compared to the other architectures we assessed. The 
incorporation of structural information through weighted voxels significantly 
enhances the performance of architectures with a larger number of 
parameters. This is particularly evident in the case of VoxNet, where the 
results suggest that simpler architectures benefit more from using binary 
voxels due to their straightforward and easily interpretable data structure. 

 

 

 VGG16 ResNet50 ResNet50v2 DenseNet121 VoxNet 

B
in

a
ry

 

     

W
ei

g
te

d
 

     



Volume 13, No. 1, June 2025 
 

 
EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168 

33 

Table 5. The Classification Results from KITTI dataset 

Training Dataset Model Type Preprocessing Accuracy (%) 
Loss  
(%) 

KITTI Dataset 

ResNet50 Binary Voxel 31.39 1.69 

 Weighted Voxel 32.59 1.57 
ResNet50V2 Binary Voxel 50 1.36 

 Weighted Voxel 67.69 0.9 
DenseNet121 Binary Voxel 90.26 0.39 

 Weighted Voxel 95.14 0.18 
VoxNet Binary Voxel 93.6 0.2 

 Weighted Voxel 80.78 0.52 
VGG16 Binary Voxel 96.04 0.35 

 Weighted Voxel 98.17 0.15 
 

Table 6. The Classification Results from our dataset 

Training Dataset Model Type Preprocessing Accuracy (%) 
Loss  
(%) 

Our Dataset 

ResNet50 Binary Voxel 32.72 1.4 

 Weighted Voxel 34.55 1.38 
ResNet50V2 Binary Voxel 58.23 1.16 

 Weighted Voxel 71.29 0.68 
DenseNet121 Binary Voxel 97.6 0.1 

 Weighted Voxel 98.4 0.06 
VoxNet Binary Voxel 97.87 0.09 

 Weighted Voxel 88.55 0.32 
VGG16 Binary Voxel 98.41 0.09 
  Weighted Voxel 98.67 0.07 

 
Overall, it can be observed that the combination of weighting with the 

VGG16 CNN architecture experienced a significant performance increase, 
reaching an accuracy of 98.67% compared to other architectures. The results 
of DenseNet121 can also be considered competitive with VGG16 CNN, as it 
achieved an accuracy of 98.4% the second-highest. Meanwhile, VoxNet 
experienced a decrease in accuracy with the presence of weighted voxels, 
dropping from its original 97.87% to 88.55%. These results suggest that the 
combination of VGG16 with weighted voxel preprocessing can be relied upon 
for estimating human orientation based on 3D point cloud data. 
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Table 7. The Computation time of each model 

Model Type Computation 
Time  
(s) 

VGG16 762.8  
ResNet50 262.5 
ResNet50v2 262.5 
DenseNet121 864.6 
VoxNet 58.2 

 
We also provide a comparison of the training computation time for each 

model to offer a promising perspective on the effectiveness of orientation 
classification. As seen in Table 7, DenseNet121 has the longest computation 
time compared to the other models. The shortest computation time is 
observed in VoxNet, with a recorded time of 58.2 for a single training cycle. 
This computation speed is influenced by the number of parameters in each 
architecture. The modified VGG16 demonstrates a mid-range computation 
speed but with better performance compared to the other models. 

 
6. CONCLUSION 

In this paper, we proposed the addition of preprocessing, namely 
weighted voxels, to several CNN architectures used for estimating human 
orientation based on 3D point cloud data. A CNN-based approach was 
combined with weighted voxels for the task of capturing and classifying 3D 
human orientation. We employed weighted voxels to transform information 
from 3D binary voxel data into voxels with robust and discriminative 
descriptors. The performance of weighted voxels was reinforced by comparing 
their performance using convolution matrices on the KITTI public dataset and 
our dataset. We divided this dataset into four orientation classes. The 
comparison between the use of weighted voxels and binary voxels in several 
architectures, such as VGG16, ResNet50, ResNet50V2, DenseNet121, and 
VoxNet achieved competitive performance in a series of experiments. In our 
ongoing research, we will continue to explore voxel-based preprocessing 
approaches with specific feature modifications, not limited to binary or 
weighted, and also develop other deep learning architectures. 
 
Acknowledgments 

This work has been fully funded and supported by Balai Pembiayaan 
Pendidikan Tinggi (BPPT) under the Ministry of Education, Culture, Research, 
and Technology, as well as Lembaga Pengelola Dana Pendidikan Indonesia and 
in part of the Penelitian Fundamental - Riset Dasar Research Grant. 

 
REFERENCES 
[1] Banerjee A, Galassi F, Zacur E, De Maria GL, Choudhury RP, and Grau V, 

Point-Cloud Method for Automated 3D Coronary Tree 



Volume 13, No. 1, June 2025 
 

 
EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168 

35 

Reconstruction From Multiple Non-Simultaneous Angiographic 
Projections, IEEE Trans Med Imaging, vol. 39, pp. 1278–90, 2020. 

[2] Han L, Zheng T, Zhu Y, Xu L, and Fang L, Live Semantic 3D Perception 
for Immersive Augmented Reality, IEEE Trans Vis Comput Graph, vol. 
26, pp. 2012-2022, 2020. 

[3] Li J, Qin H, Wang J, and Li J, OpenStreetMap-Based Autonomous 
Navigation for the Four Wheel-Legged Robot Via 3D-Lidar and CCD 
Camera. IEEE Transactions on Industrial Electronics, vol. 69, pp. 2708-
2717, 2022. 

[4]      Zeng Y, Hu Y, Liu S, Ye J, Han Y, Li X, Sun N, RT3D: Real-Time 3-D Vehicle 
Detection in LiDAR Point Cloud for Autonomous Driving, IEEE Robot 
Autom Lett, vol. 3, pp. 3434-3440, 2018. 

[5] Ma L, Li Y, Li J, Yu Y, Junior JM, Goncalves WN, Chapman MA., Capsule-
Based Networks for Road Marking Extraction and Classification 
From Mobile LiDAR Point Clouds, IEEE Transactions on Intelligent 
Transportation Systems, vol. 22, pp. 1981-1995, 2021. 

[6] Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, 
Baldan G, Beijbom O, nuScenes: A multimodal dataset for 
autonomous driving, 2019. 

[7] Duan Y, Zheng Y, Lu J, Zhou J, and Tian Q, Structural Relational 
Reasoning of Point Clouds, 2019 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 949–58, 2019. 

[8] Song X, Wang P, Zhou D, Zhu R, Guan C, Dai Y, Su H, Li H, Yang R, 
ApolloCar3D: A Large 3D Car Instance Understanding Benchmark 
for Autonomous Driving, 2018. 

[9] Lv C, Lin W, and Zhao B, Voxel Structure-Based Mesh Reconstruction 
From a 3D Point Cloud, IEEE Trans Multimedia, vol. 24, pp. 1815-1829, 
2022. 

[10] Kang Z, Yang J, Zhong R, Wu Y, Shi Z, and Lindenbergh R, Voxel-Based 
Extraction and Classification of 3-D Pole-Like Objects From Mobile 
LiDAR Point Cloud Data, IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 
11, pp. 4287-4298, 2018. 

[11] Agrawal S, Bhanderi S, Doycheva K, and Elger G. Static Multitarget-
Based Autocalibration of RGB Cameras, 3-D Radar, and 3-D Lidar 
Sensors, IEEE Sens J, vol. 23, pp. 21493-21505. 

[12] Kettelgerdes M, and Elger G, In-Field Measurement and Methodology 
for Modeling and Validation of Precipitation Effects on Solid-State 
LiDAR Sensors, IEEE Journal of Radio Frequency Identification, vol. 7, 
pp. 192-202, 2023. 

[13] Liu W, Tang X, and Zhao C, Robust RGBD Tracking via Weighted 
Convolution Operators, IEEE Sens J, vol. 20, pp. 4496-4503, 2020. 

[14] Sun W, Iwata S, Tanaka Y, and Sakamoto T, Radar-Based Estimation of 
Human Body Orientation Using Respiratory Features and 
Hierarchical Regression Model, IEEE Sens Lett, vol. 7, pp. 1-4, 2023. 



Volume 13, No. 1, June 2025 

 
EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168 

36 

[15] Cardarelli S et al, Single IMU Displacement and Orientation 
Estimation of Human Center of Mass: A Magnetometer-Free 
Approach, IEEE Trans Instrum Meas, vol. 69, pp. 5629-5639, 2020. 

[16] Li S, Li L, Shi D, Zou W, Duan P, and Shi L, Multi-Kernel Maximum 
Correntropy Kalman Filter for Orientation Estimation, IEEE Robot 
Autom Lett, vol. 7, pp. 6693-6700, 2022. 

[17] Zhang J-H, Li P, Jin C-C, Zhang W-A, and Liu S, A Novel Adaptive Kalman 
Filtering Approach to Human Motion Tracking With Magnetic-
Inertial Sensors, IEEE Transactions on Industrial Electronics, vol. 67, pp. 
8659-8669, 2020. 

[18] Fisch M and Clark R, Orientation Keypoints for 6D Human Pose 
Estimation, IEEE Trans Pattern Anal Mach Intell, vol. 44, pp. 10145-
10148, 2022. 

[19] Lee D, Yang M-H, and Oh S, Head and Body Orientation Estimation 
Using Convolutional Random Projection Forests, IEEE Trans Pattern 
Anal Mach Intell, vol. 41, pp. 107-120, 2019. 

[20] Wu C, Chen Y, Luo J, Su C-C, Dawane A, Hanzra B, Deng Z, Liu B, Wang J, 
Kuo C-H, MEBOW: Monocular Estimation of Body Orientation In the 
Wild, 2020. 

[21] Riansyah MochI, Sardjono TA, Yuniarno EM, and Purnomo MH, 
Prediction of Human Body Orientation based on Voxel Using 3D 
Convolutional Neural Network, 2023 International Seminar on 
Intelligent Technology and Its Applications (ISITIA), IEEE, pp. 99–104 
2023. 

[22] Xie H, Yao H, Sun X, Zhou S, and Tong X, Weighted voxel, Proceedings of 
the 10th International Conference on Internet Multimedia Computing and 
Service, New York, pp. 1–4 2018. 

[23] Dewantara BSB, Saputra RWA, and Pramadihanto D, Estimating human 
body orientation from image depth data and its implementation, 
Mach Vis Appl, vol. 33, pp. 38, 2022. 

[24] Menze M, and Geiger A, Object scene flow for autonomous vehicles. 
2015 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), IEEE, pp. 3061–70, 2015. 

[25] Maturana D and Scherer S, VoxNet: A 3D Convolutional Neural 
Network for real-time object recognition, 2015 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), IEEE, 
pp. 922–928, 2015. 

  


