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Abstract 
 
A challenging task when developing real-time Automatic Music 
Transcription (AMT) methods is directly leveraging inputs from 
multichannel raw audio without any handcrafted signal 
transformation and feature extraction steps. The crucial problems 
are that raw audio only contains an amplitude in each timestamp, 
and the signals of the left and right channels have different amplitude 
intensities and onset times. Thus, this study addressed these issues 
by proposing the IRawNet method with fused feature layers to merge 
different amplitude from multichannel raw audio. IRawNet aims to 
transcribe Indonesian classical music notes. It was validated with the 
Gamelan music dataset. The Synthetic Minority Oversampling 
Technique (SMOTE) overcame the class imbalance of the Gamelan 
music dataset. Under various experimental scenarios, the 
performance effects of oversampled data, hyperparameters tuning, 
and fused feature layers are analyzed. Furthermore, the performance 
of the proposed method was compared with Temporal Convolutional 
Network (TCN), Deep WaveNet, and the monochannel IRawNet. The 
results proved that proposed method almost achieves superior 
results in entire metric performances with 0.871 of accuracy, 0.988 
of AUC, 0.927 of precision, 0.896 of recall, and 0.896 of F1 score.  

  
Keywords: Indonesian Classical Music, Gamelan Notes Transcription, 
Music Signal Processing, Multi-Channel Raw Audio, Deep Learning, 
IRawNet.  

 
1. INTRODUCTION 

AMT aims to automatically retrieve the musical source codes from a 
song. One such musical source code is the note composition of a song [1]. 
Machine learning has been utilized to recognize notes from isolated note 
recordings. Performing deep learning extends the capability of machine 
learning to transcribe sequences of notes from song recordings. Previously 
developed AMT methods involved a preprocessing step that transforms raw 
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audio to the time-frequency domain to produce more amplitude features in 
time frames. Transcription in the time-frequency domain works at the frame 
level or note level. The frame level only contains pitch information across the 
frame. Meanwhile, note level transcribes notes as a pitch that contains onset 
and offset information. Onset is assigned as the time of the beginning of a 
note. Meanwhile, offset is a time at the end of the note. Commonly, both are 
predicted as binary values along frames that contain pitch. The transcription 
result in the time-frequency domain requires post-processing to convert to 
the actual playing time in the time domain. The conversion probably induces 
significant timestamp shifts in the time domain if prediction errors occur at 
the frame level in the time-frequency domain because a frame is formed from 
a windowing process where each window is a combination of several 
timestamps.  

Therefore, AMT requires an agile method to transcribe notes in the time 
domain to obtain pitch information that corresponds to the actual playing 
time. It is potentially applied for real-time music transcription because it 
does not involve the preprocessing of signal transformation and post-
processing of transcription result conversion. It only relies on features of 
amplitude sequence. 

Recently, an amplitude sequence of raw audio has been investigated as 
input representation for audio generation [2], [3]. TCN was examined for 
tracking the musical beat [4]. Furthermore, Deep WaveNet was introduced 
for transcribing piano notes directly from raw audio and classifying heart 
diseases [5], [6]. TasNet was presented for music source separation in time 
domain. Those methods simplified input by using monochannel raw audio.    

Commonly, raw audio is composed of multichannel amplitudes. 
Developing a deep learning method using inputs derived from multichannel 
is challenging because the channels have Interaural Level Differences (ILD) 
and Interaural Time Differences (ITD). ITD and ILD induce time and sound 
level differences while signals arrive at every channel. An example of the ITD 
effect is the difference in the onset time between channels. Onset time means 
a time of musical note is starting. Whereas ILD produces the amplitude 
difference among the channels at each timestamp. Although ILD and ITD 
from the multichannel are useful for signal separation tasks [7], [8]. However, 
many AMT methods avoided them by simplifying the multichannel amplitude 
to the monochannel by averaging amplitude from the left and right channels. 
Exploiting amplitude features directly from multichannel raw audio has 
rarely been investigated in the AMT task. Stereo feature enhancement (SFE) 
was suggested for combining spectral features from the stereo channel to 
overcome ILD and ITD [9]. The main contributions of this study are described 
below: 
1. Transcribing notes from song recording that contain a single instrument of 

an Indonesian classical music. 
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2. Proposing IRawNet as a deep learning method to transcribe notes directly 
from multichannel raw audio. IRawNet transcribes notes corresponding to 
the presence of pitches in the time domain.  

3. Overcoming ILD and ITD effects from multichannel raw audio with fused 
features layers in the IRawNet architecture. 

4. Presenting the Gamelan music dataset to evaluate the proposed method. 
Gamelan is the classical music of Indonesia, classified as polyphonic music 
[10], [11].  

5. Balancing class distribution of the Gamelan music dataset using SMOTE.  
6. Analyzing the best hyperparameters tuning of IRawNet and fused feature 

layers with statistical analysis. 
 

2. RELATED WORKS 
Short Time Fourier Transform (STFT), Constant Q Transform (CQT), 

Harmonic Constant Q-Transform (HCQT), Variable Q Transform (VQT), Log 
Magnitude Spectrogram, Differential Spectrogram, Scalogram, Chromagram, 
and Mel Spectrogram were widely used to transform raw audio signal [12]. 
Moreover, transforming the Mel spectrogram with Discrete Cosine 
Transformation (DCT) generates another feature, namely MFCC (Mel 
Frequency Cepstral Coefficients). MFCC is suitable for representing the 
timbral of note [13], [14]. Those signal transformations were utilized to 
transcribe notes in the time frequency domain.  Another input representation 
that has been investigated is the latent feature of signal transformations 
obtained from the Autoencoder Decoder and Generative Adversarial Network 
(GAN) methods [15–17]. Moreover, binary vectors have been investigated as 
input representations [18]. A binary vector represents the active and inactive 
notes in each timestamp with values of 1 and 0, respectively.  

Signal transformations, latent features, and binary vectors are sequence 
data. Therefore, a recurrent network is an appropriate deep-learning method 
for note transcription tasks. Deep Neural Network (DNN) has been used to 
transcribe classical Thai music [3]. A simple architecture of the Recurrent 
Neural Network (RNN) method has been used to learn note patterns from 
signal transformation sequences [9], [14]. However, the computational 
process of an RNN is too expensive because the transcription procedure in 
each frame depends on all previous frames. Long Short-Term Memory 
(LSTM) is an RNN refinement for transcribing notes in each frame based on 
relevant information from previous frames [7], [19]. Many studies developed 
hybrid methods to achieve enhanced transcription performance. Hybrid 
methods of Convolutional Neural Network (CNN) and RNN [6]; CNN, RNN, 
and LSTM [20]; CNN and Bidirectional LSTM [21]; Convolutional Recurrent 
Neural Network (CRNN) and Bidirectional Gate Recurrent Unit (BiGRU) have 
been proposed by combining various signal transformations [22], [23]. The 
results have proven that combining CNN in hybrid methods contributed to 
increasing the transcription performance. However, the hybrid methods 
relied on signal transformation as input representation. Hence, they are not 
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potentially applied for real-time music transcription. Thus, this study 
presents IRawNet to transcript music directly from raw audio without any 
handcraft signal transformation and feature extraction. Hence, it is 
potentially applied as a real-time music transcription method. 

 
3. ORIGINALITY 

This study proposed a new method IRawNet for transcribing musical 
note directly from multichannel raw audio without any handcraft feature 
extraction and signal transformation steps. IRawNet predicts musical notes 
based on features of amplitude sequence. Features of amplitude sequence 
contain pitches that have been annotated based on notes named by a 
Gamelan expert.  IRawNet contains fused feature layer to tackle ILD and ITD 
effect that induce the difference of onset time and amplitude level from the 
left and right channels by using equations (2) and (3).  

Moreover, we present our Gamelan music dataset [24] that has been 
published in the Zenodo repository [25].   

 
4. SYSTEM DESIGN 
4.1 Dataset Preparation 

This study used a public Gamelan music dataset. We collected solo 
recordings of Saron instruments from Gamelan music dataset. Collected 
dataset, label, and source codes are available at the link 
https://github.com/dewinurdiyah05/Gamelan-Notes-Transcription. 

Saron recordings have various durations between 76.814 to 204.823 
seconds with a sampling rate of 44100 Hz. The sampling rate was 
downsampled to 11024 Hz to reduce computation. The transcription task 
classified a note in each timestamp of song recordings. Thus, a timestamp 
was considered as a sample. The number of datasets was the number of 
samples from entire song recordings. Therefore, the number of samples was 
(2 channels x 11024 of sampling rate x duration x 9 song recordings) 
23,206,137 samples. Each sample contains an amplitude feature. The 
amplitude level of the Gamelan songs is not uniform. Therefore, these levels 
were normalized in the range between 1 to -1 according to the minimum and 
maximum limits of audio recordings. 

Each sample of Gamelan songs was annotated based on the active note 
in each timestep. The notes of Barang, Gulu, Dhada, Lima, and Nem on the 
fifth octave were symbolized as 1, 2, 3, 5, and 6 respectively. Barang on the 
sixth octave was categorized as 11. Furthermore, the notes annotation was 
changed to a uniform scale of 1, 2, 3, 4, 5, 6, and 7, respectively. If there was 
no active note in a timestamp, it was categorized as 0. 

 
4.2 Class Balancing 

The note transcription task classifies notes in each sample. Class 
imbalance is a crucial issue that causes low classification performance by 
inducing misclassification of minority classes [26]. Each Gamelan song is 
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generated with different note compositions, thereby influencing the number 
of note classes. Therefore, analyzing class distribution is important before 
training the data to the deep learning method. SMOTE is an oversampling 
method that is suitable for class balancing because it does not change the 
original signal. It replicates samples from the minority classes. The main 
steps of SMOTE are : 

• Choose the sample  from the minority class randomly 
• Identify the neighborhood  that is closest to . 
• Pick the next neighborhood sample  
• Generate a new sample  with equation (1). 

 (1) 

• Repeat the first to fourth point until the synthetic sample is equal to the 
number of SMOTE expectations. Finally, the number of oversampled data 
is (41,745,408 samples). 

 
4.3 Slicing Window 

Previous studies used sliding windows with overlapping samples as 
input data for deep learning. Sliding windows improved deep learning 
performance because equal numbers of samples are repeatedly trained. In 
addition, deep learning is more reliable for learning short sequences in the 
slicing window than learning directly from song recordings that contain long 
sequences. Therefore, the oversampled data were sliced with a window size 
of 0.25 seconds, which was equal to 2756 samples. The results of the 
window-slicing process were raw audio chunks, denoted as    the left 
channel, and  the right channel.  and  represent multichannel 
inputs.  is the number of window slices,  is equal to the number of samples 
in the window size, and 1 is the number of amplitude features in each sample. 
Moreover, the sequence of categorical notes of each Gamelan song recording 
was sliced according to the window slicing size, which is denoted as .  
is the multiclass target. Eight is the number of categorical notes encoded in 
the binary values. A binary value of 1 represents an active note, whereas 0 
indicates that no note is played in a sample. 
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4.4 IRawNet Architecture 

 
Figure 1. Proposed method: IRAWNET architecture 

 
 IRawNet is the deep learning method proposed in this study. Figure 1 

visualizes IRawNet architecture. It consists of a multinetwork for extracting 
amplitude features from multichannel. Each sample of raw audio contains 
only one amplitude feature. Therefore, the transposed convolution layer 
enriches the amplitude features by increasing their dimensions [27]. The 
features from transposed convolution are denoted as  and , are 
associated with the fused feature layers to handle ITD and ILD effects in 
equations (2) and (3), respectively. The tanh activation function is applied to 
preserve the scale of amplitude features that do not change during feature 
integration.  in equation (4) is the average amplitude of the left and right 
channels. The amplitudes are averaged to prevent each of the channels from 
having a zero value. Moreover, Applying the direct sum among  and both 

 avert too small features that are propagated to the convolutional 
block. Each convolutional block consists of a dilated causal convolution layer, 
a batch normalization, and a leaky ReLU activation function. The dilated 
causal convolutional layer classifies notes of the current sample by extracting 
previously selected samples based on the kernel size and dilation factor [28]. 
The batch normalization conserves weight value in the normal distribution 
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[29], and the leaky ReLU is a nonlinear activation function that is appropriate 
for the AMT task [17], [30]. 

Each convolutional block receives residual weights from previous 
convolutional blocks. The residual networks prevent small weights from 
being used in the subsequent convolutional blocks. Thus, it avoids overfitting 
in the deep network. The subsequent layer includes the concatenation 
feature of the last convolutional block and the transposed convolution layers 
from the multinetwork. It aims to combine the features derived from deep 
and shallow networks to achieve improved transcription performance. The 
output layer is a dense layer with eight neurons, which is equal to the 
number of categorical notes. The activation function of the last layer is the 
softmax function, as presented in equation (5). It is suitable for multiclass 
classification problems. Each multiclass vector  has a score  for each 
element . The combination of softmax and the categorical cross-entropy 

loss preserves only one element in has a positive class prediction score   

using equation (6). Table 1 shows initial hyperparameter of IRawNet. The 
input size of the left and right channels is 0.25 seconds or 2756 samples, the 
filter size is 32, the kernel size is 30, the alpha value of the leaky ReLU 
activation function is 0.03, and fused feature layers consist of  and . 
IRawNet was compiled with categorical cross-entropy loss, epochs of 100, 
and the RMSprop optimizer with a learning rate of 10-e5. The effective 
hyperparameter tuning is observed in the result section. 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 
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Table 1. Initial hyperparameters tuning of the proposed method 

Channel Layer Name 
Output 
Shape 

Kernel 
Size 

Number 
of Filter 

Stride 
Dilation 
Factor 

Alpha 
Value 

Left Input 1 2756 - - - - - 

Right Input 2 2756 - - - - - 

Left 1D Transpose Conv 1 2756 1 32 1 - - 

Right 1D Transpose Conv 2 2756 1 32 1 - - 

Left W1 2756 - - - - - 

Right W2 2756 - - - - - 

Left 

Convolutional Block-1       

1D Convolution 1 2756 30 32 1 1 - 

Batch Norm 1 2756 - - - - - 

Leaky Relu 1 2756 - - - - 0.03 

Residual 1 2756 - - - - - 

Convolutional Block-2       

1D Convolution 2 2756 30 32 1 2 - 

Batch Norm 2 2756 - - - - - 

Leaky Relu 2 2756 - - - - 0.03 

Residual 2 2756 - - - - - 

…       

Convolutional Block-5       

1D Convolution 5 2756 30 32 1 16 - 

Batch Norm 5 2756 - - - - - 

Leaky Relu 5 2756 - - - - 0.03 

Residual 5 2756 - - - - - 

Right 

Convolutional Block-1       

1D Convolution 1 2756 30 32 1 1 - 

Batch Norm 1 2756 - - - - - 

Leaky Relu 1 2756 - - - - 0.03 

Residual 1 2756 - - - - - 

Convolutional Block-2       

1D Convolution 2 2756 30 32 1 2 - 

Batch Norm 2 2756 - - - - - 

Leaky Relu 2 2756 - - - - 0.03 

Residual 2 2756 - - - - - 

…       

Convolutional Block-5       

1D Convolution 5 2756 30 32 1 16 - 

Batch Norm 5 2756 - - - - - 

Leaky Relu 5 2756 - - - - 0.03 

Residual 5 2756 - - - - - 

Combinat
ion of Left 
and Right 

Concatenated Layer 2756 - - - - - 

Dense 2756 - 8 - - - 

Softmax 2756 - - - - - 

 
4.5 Training, Validation, and Testing 

Without overlapping raw audio chunks in training and testing, the raw 
audio chunks were split into 80% and 20% for training and testing randomly. 
The training stage used 5 K-fold, and 20% of training data was arbitrarily 
selected as validation. 
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4.6 Performances 
4.6.1 Accuracy 

As expressed in equation (7), accuracy is the correct prediction of 
positive and negative classes. The best note transcription performance has an 
accuracy score that is close to 1. 

 (7) 

TP and FN are the numbers of true and false predictions of the positive 
class, respectively. FP is the false prediction of the negative class. Whereas 
TN is the true prediction of the negative class. 

 
4.6.2 Precision 

Precision is the ratio of the number of true predictions of the positive 
class to the total number of positive predictions, as expressed in equation (8). 
The positive class represents an active note with a value of 1 in Y. 

 (8) 

4.6.3 Recall 
Recall is the ratio of the number of true predictions of the positive class 

to the total number of predicted samples that belong to the positive class, as 
expressed in equation (9). 

 (9) 

4.6.4 Area Under Curve (AUC) 
AUC is a scalar value corresponding to the Receiving Operating 

Characteristic (ROC) performance. The ROC curve is a suitable curve for 
visualizing performance based on the true-positive and false-positive rates. A 
higher AUC implies higher transcription performance. The AUC value in 
equation (11) is obtained from the ROC area of Recall or True Positive Rate 
(TPR) and False Positive Rate (FPR) in equation (10). 

 (10) 

 (11) 

4.6.5 F1 Score 
F1 score is the harmonic mean of precision and recall, as expressed in 

equation (12). 

 (12) 

4.6.6 Statistical Analysis 
In the experimental scenario, the most effective hyperparameter values 

were identified by tuning the filter size, kernel size, alpha value of the leaky 
ReLU activation function, optimizer type, and number of convolutional 
blocks. Increasing the filter size, kernel size, and number of convolutional 
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blocks increased the number of total parameters. Many parameters require 
long training times. In addition, Increasing total parameters is not 
guaranteed to produce the best overall performances. Hence, the statical 
analysis of ANOVA and t-test were performed to examine the significant 
performance differences in each hyperparameter scenario based on a 
confidence level of 95% with (α = 0.05). If (P value > α),  is accepted. Under 
this hypothesis, there is no significant performance difference. Otherwise, if 
the (P value < α), then   is accepted, indicating significant performance 
differences. The accepted hypothesis is described in each hyperparameter 
scenario. 

 
5. EXPERIMENT AND ANALYSIS 

In the experimental scenarios, the performance effects of oversampled 
data, hyperparameters tuning, and applying fused feature layers on the 
proposed method were analyzed. 

 
5.1 Effect of oversampled data 

The class distribution of the original Gamelan dataset is imbalanced in 
Figure 2(a) because each Gamelan song does not require playing whole notes, 
and the note composition of each Gamelan song is different from those of the 
other songs. Figure 2(b) shows the result of oversampled data with the 
SMOTE method. This scenario compared the performances achieved by 
utilizing inputs from the original data and oversampled data. In Figure 3 
employing the oversampled data as input improved the accuracy by 16%, the 
AUC by 3.6%, the precision by 11%, the recall by 27%, and the F1 score by 
19% over those performances obtained from the original data. Thus, in 
subsequent scenarios, the oversampled data were used as inputs. 

      

 
 

Figure 2. Class distribution of the original data (a) and oversampled data (b) 
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Figure 3. Performances of utilizing input from the original and oversampled data 

 
5.2 Hyperparameters Tuning 
5.2.1 Effect of Filter Size 

In this scenario, the performance was investigated using filter sizes 32, 
64, and 128. A filter size of 32 generated a total of 310,216 parameters. A 
filter size of 64 corresponded to a total of 1,234,824 parameters, and a filter 
size of 128 raised the total number of parameters to 4,927,240. Figure 4 
shows that increasing the filter size did not increase the overall performance. 
Moreover, based on the ANOVA test,  was accepted because (P value = 
0.278); hence, no significant performance differences were observed among 
filter sizes 32, 64, and 128. Thus, the most effective filter size is 32 because it 
yielded fewer parameters than the other options. 

 

 
Figure 4. Performances of different filter sizes 

 
5.2.2 Effect of kernel size 

The kernel size determines the number of previous samples that are 
incorporated into the note transcription for the current sample. This scenario 
tested the performance achieved with kernel sizes of 3, 30, and 150. A kernel 
size of 3 yielded 33,736 total parameters, a kernel size of 30 generated 
310,216 parameters, and a kernel size of 150 produced 1,539,016 
parameters. The ANOVA test was rejected  and accepted  because of the 
(P value = 2.1e-21). Furthermore, a T-test was conducted to identify the most 
effective filter size by analyzing two kernel sizes. 
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• A paired t-test was used to examine significant differences between 
kernel sizes of 3 and 30. The result supported the acceptance of  with 
(P value = 4.63513e-07). Figure 5 shows that the performances achieved 
with a kernel size of 30 were higher than kernel size of 3. Hence, the 
subsequence T-test considered kernel sizes of 30 and 150. 
 

  
Figure 5. Performances of different tuning of kernel sizes 

 
• The T-test with kernel sizes of 30 and 150 was approved  with (P 

value = 0.189329433). No significant performance differences were 
observed between kernel sizes of 30 and 150. Moreover, the kernel size 
that corresponded to fewer parameters was identified as the more 
effective kernel size. Hence, the most effective kernel size is 30. 

 
5.2.3 Effect of the alpha value of the leaky ReLU activation function 

The leaky ReLU activation function aims to avoid zero weights via 
multiplication by alpha. Alpha values of 0.003, 0.03, and 0.3 were explored. 
The result of the ANOVA test acceptance   with (P value = 0.0006). Hence, a 
T-test was required to examine the significant difference between two alpha 
values. 
• A paired T-test of 0.3 and 0.03 justified   with (P value = 0.025208516). 

It confirmed that there were significant performance differences 
between alpha values 0.3 and 0.03. Figure 6 shows that the alpha value of 
0.03 reached higher performances than 0.3. Thus, the subsequent T-test 
examined alpha values of 0.03 and 0.003. 

• According to the T-test with alpha values of 0.03 and 0.003,   was 
accepted because (P value = 0.042834124). Hence, the more effective 
alpha value was determined based on the average performance. The 
alpha values of 0.03 and 0.003 achieved average performances of 
0.91526 and 0.89944, respectively. Therefore, 0.03 is the recommended 
alpha value for the proposed method. 
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Figure 6. Performances achieved with different alpha values in the leaky ReLU 

activation function 
 

5.2.4 Effect of the optimizer type 
Exploring the optimizer type aimed to identify the best optimizer based 

on the convergence of the training and validation stage, metric performances, 
and statistical analysis results. This scenario examined optimizers of the 
Adaptive Moment Estimation (Adam), Root Mean Square Propagation 
(RMSprop), and Stochastic Gradient Descent (SGD) optimizers. Figure 7 
shows that SGD achieved excellent convergence. However, SGD produced the 
lowest performance in accuracy. In contrast, Adam and RMSprop had high 
accuracy and achieved similar convergence in the training and validation 
stage. Figure 8 shows that Adam and RMSprop outperformed SGD in terms of 
all performances. Thus, a T-test was conducted to analyze the significant 
performance differences between Adam and RMSprop optimizers. The result 
approved  with (P value = 0.04657), indicating significant performance 
differences between Adam and RMSprop optimizers. The total average 
performance of RMSprop and Adam were 0.91562 and 0.899768, 
respectively. Hence, the best optimizer is RMSprop. 

 
Figure 7. Accuracy convergence in the training and validation stage 

  

 
Figure 8. Performance of the optimizer tuning 
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5.2.4 Effect of the number of convolutional blocks 
The number of convolutional blocks influences the resulting feature 

extraction. IRawNet with deep network stacks uses more convolutional 
blocks to extract patterns from larger previous samples by increasing the 
dilation factor, hence, generating more parameters. In contrast, the shallow 
network only utilizes a few convolutional blocks and produces few 
parameters. This scenario investigated the performance of stacking two, five, 
and nine convolutional blocks. The result of the ANOVA confirmed , there 
were significant performance differences among two, five, and nine 
convolutional blocks with (P value = 3.46963E-14). Figure 9 visualizes that 
the performance of five convolutional blocks is almost equivalent to nine 
convolutional blocks. Therefore, the T-test inspected the significant 
performance differences between these options. The result affirmed  with 
(P value = 0.02854). It explains significant performance differences between 
five and nine convolutional blocks. The five and nine convolutional blocks 
attained an average performance of 0.91562 and 0.898988, respectively. 
Moreover, five and nine convolutional blocks generated 310,216 and 557,256 
total parameters, respectively. Therefore, the most effective number of the 
convolutional blocks is five. 

 

 
Figure 9. Performances of different numbers of convolutional blocks 

 

5.3 Effect of The Fused Feature Layers 
The fused feature layers do not influence the number of total 

parameters. Fused feature layers contribute to overcoming ILD and ITD 
effects by combining amplitude features derived from multichannel. This 
scenario examined the versions of IRawNet with and without applying fused 
feature layers. Figure 10 shows that stacking the fused feature layer 
increased the performance by 0.8% in terms of accuracy, 0.5% in terms of 
precision, 6% in terms of recall, and 2% in terms of F1 score. 
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Figure 10. Comparison performance between versions of IRawNet using and not 

using fused feature layers 

 
5.4 Comparison with the other methods 

The proposed method was compared with Deep WaveNet, TCN, and the 
monochannel IRawNet. Table 2 shows that the proposed method achieves 
superior performance on all metrics. Mono channel IRawNet  necessitates the 
shortest time to transcribe notes in the music song recording with a duration 
of 3.5 seconds because it has the fewest total parameters. Based on the 
number of total parameters, our proposed method desires 4 seconds more 
than mono channel IRawNet. Nonetheless, our proposed method can 
potentially be applied for real-time music transcription because the 
computation time is less than that of previous methods. Furthermore, Figure 
11 visualizes the results of note transcription from a song recording. It shows 
that the proposed method produces lower error transcription than TCN, 
Deep WaveNet, and the mono channel IRawNet. 
 

Table 2. Comparison performances with the other methods 

Method Accuracy AUC Precision Recall F1 
Total 

Parameters 

Time 

Computation 

(second) 

TCN [3] 0.659 0.938 0.757 0.545 0.633 410,108 14.535 

Deep 

WaveNet 

[5][31] 

0.846 0.977 0.410 0.974 0.579 659,208 68.350 

Mono 

channel 

IRawNet 

0.8 0.976 0.870 0.733 0.795 155,112 7.006 

Proposed 

method 
0.871 0.988 0.927 0.896 0.896 310,216 11.397 
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Figure 11.  The comparison result of note transcription between the proposed 

method and the other methods. The error indicates false predictions from FP and 
FN. 
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6. CONCLUSION 
This study presented IRawNet as a deep learning method for 

transcribing Indonesian classical music notes directly from multichannel raw 
audio as input representation. IRawNet extracts the sequence of amplitude 
features that represent note patterns in the music recording. It was validated 
on the Gamelan music dataset. The minority classes of the Gamelan music 
dataset were oversampled with SMOTE. The effect of oversampled data, 
hyperparameters, and fused feature layers was examined. The findings 
showed that adopting oversampled data boosted the accuracy by 16%, the 
AUC by 3.6%, the precision by 11%, the recall by 27%, and the F1 by 19% 
compared to the performance of using the original data. Based on the metric 
performance and the statistical analysis, The most effective hyperparameters 
are a filter size of 32, a kernel size of 30, an alpha value for the leaky ReLU 
activation function of 0.03, the RMSprop optimizer, and five convolutional 
blocks. Furthermore, The effect of the fused feature layer increased by 0.8%, 
the precision by 0.5%, the recall by 6%, and the F1 score by 2%. The 
performance of proposed method was compared with those of TCN [3], Deep 
WaveNet [31], and the monochannel IRawNet. The comparison results 
proved that employing the amplitude feature from multichannel in the 
proposed method improved the accuracy by 2% to 21%, the AUC by 1% to 
5%, the precision by 5% to 51%, and the F1 score by 10% to 31%. 
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