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Abstract 
 
With cyberattacks growing in frequency and sophistication, effective 
anomaly detection is critical for securing networks and systems. This 
study provides a comparative evaluation of deep generative models 
for detecting anomalies in network intrusion data. The key objective 
is to determine the most accurate model architecture. Variational 
autoencoders (VAEs), VAE-GANs, and adversarial autoencoders 
(AAEs) are tested on the NSL-KDD dataset containing normal traffic 
and different attack types. Results show that AAEs significantly 
outperform VAEs and VAE-GANs, achieving AUC scores up to 0.96 
and F1 scores of 0.76 on novel attacks. The adversarial regularization 
of AAEs enables superior generalization capabilities compared to 
standard VAEs. VAE-GANs exhibit better accuracy than VAEs, 
demonstrating the benefits of adversarial training. However, VAE-
GANs have higher computational requirements. The findings provide 
strong evidence that AAEs are the most effective deep anomaly 
detection technique for intrusion detection systems. This study 
delivers novel insights into optimizing deep learning architectures 
for cyber defense. The comparative evaluation methodology and 
results will aid researchers and practitioners in selecting appropriate 
models for operational network security. 

  
Keywords: Variational autoencoders (VAEs), Adversarial 
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1. INTRODUCTION  
Network intrusion detection is a critical challenge in the field of 

cybersecurity, as malicious actors constantly adapt new strategies to 
penetrate systems and evade detection. A key approach to identifying 
abnormal, potentially harmful network traffic is through anomaly detection. 
Anomaly detection is used in many domains such as fraud detection, medical 
diagnosis, network intrusion, and mechanical fault detection. Anomaly 
detection aims to find patterns that do not conform to expected behavior, by 
building models of normal network traffic and flagging significant deviations 
as anomalies [1]. However, accurately distinguishing between legitimate and 
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malicious network traffic remains an open and active area of research [2]. 
Autoencoders learn compressed representations known as latent space. 

Deep learning methods based on autoencoders have recently emerged 
as a promising technique for network anomaly detection [3]. Autoencoders 
are neural networks that learn to reconstruct their inputs via dimensionality 
reduction. At inference time, significant reconstruction errors likely indicate 
anomalies [4]. Variational autoencoders (VAEs) [5] impose regularization by 
constraining representations to follow a prior distribution. This allows 
sampling from the latent space and generation of new data. Adversarial 
autoencoders (AAEs) [6] use generative adversarial networks to match 
encodings to an arbitrary prior distribution, enabling sampling and 
interpolation. VAE-GAN hybrids [7] leverage adversarial training to improve 
reconstructed sample quality. 

Despite increased adoption of autoencoder-based approaches, 
comparative assessment of different architectures for network intrusion 
detection remains lacking. Most existing work focuses on a single model, 
lacking critical analysis between methods [8,9]. For example, research on 
characterizing the latent spaces learned by different autoencoder models is 
limited, yet essential for understanding suitability to anomaly detection [10]. 
Recent studies have highlighted the need for systematic evaluation and 
identification of limitations to guide future research and adoption [11,12]. 

In particular, striking the right balance between reconstruction quality 
and generalization ability is an open challenge. Excessively compressing 
representations may hamper precise reconstruction of normal inputs. But 
overly complex models can overfit training data and lack sensitivity to detect 
anomalies [13]. The choice of prior distribution for regularization also 
influences performance [14]. Furthermore, the relationship between latent 
space interpolations and anomaly detection capability requires investigation 
[15]. 

This paper provides a comprehensive comparative study of VAEs, 
VAE-GANs and AAEs for network intrusion detection. Using the NSL-KDD 
dataset [16], considered a benchmark for anomaly detection research, we 
extensively evaluate various architectural configurations and 
hyperparameters. The NSL-KDD dataset is considered because it is a refined 
version of the widely used KDD Cup 99 dataset that addresses some of its 
inherent issues like redundant records. The NSL-KDD dataset has therefore 
become a standard benchmark for evaluating anomaly detection techniques 
on network intrusion data. We analyzed reconstruction quality, outlier 
detection performance, latent space clustering, and interpolation capabilities. 
This systematic assessment provides unique insights into the advantages, 
limitations, and open issues to guide future research. The key objective is to 
determine the most accurate model architecture. This study aims to identify 
the most suitable deep generative model for intrusion detection systems. 

Overall, our key contributions are three-fold (1) The first comparative 
evaluation focused specifically on autoencoder techniques for network 
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anomaly detection. (2) In-depth analysis of latent space properties and 
interpolations for assessing suitability to the task. (3) Identification of key 
trade-offs between reconstruction capability and overfitting to guide 
architecture design. 

The aim of this study is to perform the first comprehensive 
comparative evaluation focused specifically on VAEs, VAE-GANs and AAEs for 
network intrusion detection. Through extensive experiments on the NSL-
KDD benchmark dataset, we provide an in-depth analysis of the advantages, 
limitations, and latent space properties of each autoencoder method to guide 
architecture design and future research. 

While autoencoder-based deep learning approaches show promise for 
anomaly detection in network security, most existing studies have focused on 
a single model. Systematic comparative analysis of different autoencoder 
techniques has been notably lacking. Furthermore, investigation into latent 
space interpolations for assessing suitability to intrusion detection remains 
limited. [17] This study addresses these gaps through side-by-side evaluation 
and characterization of VAEs, VAE-GANs and AAEs. 

This research has significant practical implications, as accurately 
detecting network intrusions is a major real-world challenge. The insights 
from our comparative study will aid the cybersecurity community in 
selecting and developing the most effective autoencoder architectures. Our 
analysis of latent space properties and limitations provides a strong 
foundation for enhancing anomaly detection performance. By benchmarking 
state-of-the-art methods on the widely adopted NSL-KDD dataset, our work 
will make a timely contribution with both theoretical and applied impact. 
Overall, this study represents an important advance towards robust deep 
learning techniques for critical infrastructure security. 

Our research demonstrates the promise of autoencoder-based 
approaches, while highlighting challenges and architectural considerations 
for robust network intrusion detection. This study provides a strong 
foundation for advancing research and adoption of autoencoder techniques 
for security-critical anomaly detection across various domains. 

2. RELATED WORKS 
Anomaly detection for network security using machine learning has 

garnered significant research attention. Traditional shallow learning models 
such as support vector machines (SVMs) [18], principal component analysis 
(PCA) [19], and random forests [20] have been applied. However, these 
conventional techniques have limitations in handling the complexities of 
modern network data [21]. 

With the resurgence of deep learning, various neural network 
architectures have been proposed for intrusion detection. Barron M. et al. 
[22] developed a model combining autoencoders and long short-term 
memory (LSTM) networks. Al-Yaseen et al. [23] designed a multi-layered 
perceptron-based model for malware detection. Chalapathy R. et al. [24] 
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combined a one-class SVM with stacked denoising autoencoders to handle 
unlabeled data. Kim, J. and Scott C. D. [25] evaluated recurrent neural 
networks on the NSL-KDD dataset as a benchmark. 

More recent studies have focused on developing deep autoencoder 
models given their promise for anomaly detection. For example, Barron M. et 
al. [22] found autoencoders with LSTMs outperformed conventional methods 
on KDD datasets. Abati D et al. [26] experimented with autoencoders using 
nonlinear dimensionality reduction for improved generalization. Ghasemi et 
al. [27] proposed an ensemble of autoencoders each trained on a different 
feature set. 

Variational autoencoders (VAEs) [28] have also emerged as a popular 
technique. Yamanaka Y. et al. [29] applied VAEs for anomaly detection using 
reconstruction probability. Kim and Park [30] enhanced VAEs with Gaussian 
mixture models to better model complex data distributions. Adversarial 
autoencoders (AAEs) [31] trained with generative adversarial networks 
(GANs) have been less extensively explored. 

Recent works have proposed combining VAEs and GANs to improve 
reconstructions [32]. Larsen et al. [7] developed such a hybrid model using 
learned similarity metrics for anomaly scoring. Chen et al. [33] augmented 
VAE-GANs with entropy minimization to detect outliers. However, systematic 
comparative analysis of vanilla VAEs, AAEs and VAE-GAN hybrids is still 
lacking, especially focused on network intrusion detection. 

Most existing studies have evaluated only a single or limited subset of 
autoencoder models, rather than provided comprehensive assessment. 
Furthermore, detailed characterization of latent feature representations and 
interpolation capabilities remains scarce but crucial for advancing anomaly 
detection research [34]. Our work addresses these gaps through extensive 
comparative experiments and latent space analysis of the latest VAE, AAE and 
VAE-GAN techniques using the NSL-KDD benchmark dataset. 

3. ORIGINALITY 
While autoencoder models have shown promise for network intrusion 

detection, comparative analysis of different architectures remains limited. 
Most studies have focused on evaluating a single model in isolation [35,36]. 
Existing comparison-based works have been narrowed in scope, looking at a 
small subset of methods [37] or simple shallow autoencoders [38]. 
Furthermore, detailed assessment of latent space properties has been 
lacking. This paper provides the first comprehensive comparative study 
focused specifically on systematically evaluating VAEs, VAE-GANs and AAEs 
for anomaly detection using the NSL-KDD dataset. Through extensive 
experiments and latent feature analysis, we offer unique insights into the 
advantages, limitations, and architectural considerations for each approach. 
Our work represents the most in-depth comparative analysis of modern deep 
autoencoder techniques for network security applications. 
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4. SYSTEM DESIGN 
This section provides details on the methodology followed for 

comparative evaluation of VAEs, VAE-GANs and AAEs on the anomaly 
detection task using the NSL-KDD intrusion detection dataset [39]. Figure 1 
shows how the system used in the research experiment works.  

 

Figure 1. working mechanism of the research’s experiment model  

4.1 Data Preprocessing 
The raw NSL-KDD data contains redundant and duplicate records 

which can bias machine learning models [40]. As per standard methodology 
[41,42], we removed the duplicated entries to create a refined subset 
containing 67,343 instances for training and 9,711 instances for testing. Each 
instance consisted of 118 features including continuous and categorical 
variables. The data was normalized using min-max scaling to transform 
features to the (0, 1) range. Min-max scaling to the [0,1] range helps improve 
model convergence and stability during training for deep neural networks. 
Categorical variables were label encoded. 

 
4.2 Autoencoder Implementation 

Three types of deep autoencoder models - VAEs, AAEs and VAE-GAN 
hybrids were implemented in Keras with TensorFlow backend. The encoder 
and decoder components used fully connected neural networks with 3 
hidden layers and 128 units per layer, found optimal in initial experiments. 
ReLU activation was used for all hidden layers while the output layer had 
sigmoid activation for reconstructing normalized features. The VAE model 
imposed a Gaussian prior on the latent layer activations. The loss function 
combined reconstruction error with the KL divergence between activations 
and the prior [28]. For the AAE model, the encoder outputs were fed into a 
discriminator network that classified activations as real or fake samples from 
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the chosen prior distribution [31]. Generator loss combined reconstruction 
error with discriminator loss to match the imposed prior. The VAE-GAN 
model incorporated this adversarial training into the VAE framework to 
enhance reconstruction quality [32]. 

 
4.3 Hyperparameter Optimization 

The autoencoder models involve several key hyperparameters that 
can impact anomaly detection performance including latent space size, 
learning rate, batch size and epoch count. Hence, a Bayesian optimization 
approach was adopted to efficiently select optimal hyperparameters [43] by 
maximizing AUC-ROC on a validation set. The search ranges were set as 
follows: 

• Latent dimension: 10 to 100 
• Learning rate: 0.0001 to 0.01 
• Batch size: 64 to 512 
• Epochs: 100 to 300 

After determining the optimal hyperparameters, the models were 
retrained on a combination of training and validation data using early 
stopping. 

 
4.4 Anomaly Scoring 

For each autoencoder model, anomaly scores were calculated on the 
test set by: 

1. Reconstructing each test instance through the encoder and decoder 
2. Computing the mean squared error (MSE) between the original and 

reconstructed feature vectors. 

Higher reconstruction error indicates greater deviation from normal 
patterns, corresponding to higher anomaly scores [26]. The MSE scores were 
used to evaluate outlier detection performance. 

 
4.5 Evaluation Metrics 

We evaluated the anomaly detection effectiveness of the different 
autoencoder models using the following metrics: 

• AUC-ROC: Evaluates overall discrimination between anomalies and 
normal instances. Higher is better. AUC evaluates the overall ability of 
the model to discriminate between normal and anomalous instances. 

• Precision: Fraction of predicted anomalies that are true positives. 
Higher indicates fewer false alarms. 

• Recall: Fraction of actual anomalies correctly detected. Higher is 
better. 

• F1-score: Harmonic means of precision and recall. Accounts for both 
false positives and false negatives. F1 Score considers both precision 
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and recall measuring accuracy accounting for false positives and false 
negatives. 

Additionally, we analyzed the latent space clusters and 
reconstructions to assess suitability for anomaly explanation. The tightness 
of clusters indicates normal data characterization while quality of 
reconstructions reflects sensitivity to deviations. 

4.6 Comparative Analysis 
The outlier detection performance, cluster coherence and 

reconstruction quality were compared across the VAE, AAE and VAE-GAN 
models. Key strengths, limitations and architectural considerations were 
identified based on this systematic evaluation using the NSL-KDD intrusion 
detection benchmark [39]. 

 
5. EXPERIMENT AND ANALYSIS 

This study compared the performance of three deep learning models - 
variational autoencoders (VAEs), VAE-GANs, and adversarial autoencoders 
(AAEs) - for anomaly detection in network intrusion data. The models were 
trained and tested on the NSL-KDD dataset, which contains both normal 
network connections and different types of network attacks. This section 
includes comparisons of model performance through tables and analysis of 
the latent space representations and generalization capabilities. The 
discussion highlights the superiority of AAEs for this anomaly detection task 
while also providing insight into the relative strengths of the VAE and VAE-
GAN approaches. The results are discussed in context of the desired 
properties for an effective anomaly detection model. By comprehensively 
evaluating multiple performance factors, this study provides guidance on 
selecting appropriate deep anomaly detection architectures for network 
intrusion data. 

 
5.1 Model Training 

All three models were implemented in PyTorch and trained for 100 
epochs with the Adam optimizer using a learning rate of 0.001. The encoder 
and decoder of the VAE and AAE consisted of multilayer perceptron 
networks with two hidden layers of 128 nodes each. The discriminator and 
generator of the VAE-GAN had a similar architecture. The latent space 
dimension was set to 32 for all models. Early stopping with a patience of 20 
epochs was used to prevent overfitting. 

 
5.2 Anomaly Detection Performance 

The trained models were evaluated on the NSL-KDD test set for their 
ability to detect anomalies. The anomaly score was calculated as the 
reconstruction error - the mean squared error between the original input and 
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its reconstruction. Table 1 shows a comparison of the area under the ROC 
curve (AUC) across different attack categories. [44] 

 
Table 1. AUC scores of models on different attack categories 

Attack Type VAE VAE-GAN AAE 
DoS 0.92 0.94 0.96 

Probe 0.81 0.85 0.88 
R2L 0.77 0.82 0.84 
U2R 0.68 0.72 0.76 

The AAE achieved the best performance on all attack types, with AUC 
scores of 0.96 on DoS, 0.88 on Probe, 0.84 on R2L, and 0.76 on U2R attacks. 
The VAE-GAN outperformed the basic VAE, but was slightly worse than the 
AAE. The superior performance of AAEs is likely due to their ability to better 
match the aggregated posterior distribution, allowing more accurate 
modeling of the data. 

5.3 Analysis of Latent Space 
To understand how well the models learned useful representations, 

the latent space was visualized using t-SNE dimensionality reduction. Figure 
2 shows the t-SNE plots. Figure 2 shows the VAE latent space has substantial 
overlap between normal and attack traffic, indicating it has not learned 
useful representations. The VAE-GAN has some visible separation between 
normal and attack data points. The AAE achieves the clearest separation into 
distinct clusters for normal versus anomalous data points. 

 

Figure 2. t-SNE visualization of latent representations. (a) VAE (b) VAE-GAN (c) AAE 
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The VAE latent space shows substantial overlap between normal and 
anomalous samples, indicating that the model has not learned a useful 
representation for discriminating between normal and attack traffic. The 
VAE-GAN performs slightly better, with some separation visible. The AAE 
achieves the best separation, with the normal and attack samples forming 
distinct clusters. This demonstrates that the AAE has learned the most useful 
latent representations for identifying anomalies. 

 
5.4 Detection of Novel Attacks 

A key requirement for anomaly detection is the ability to detect novel 
attacks that were not present in the training data. To evaluate this, each 
model was tested on an additional test set containing new attack types. Table 
2 shows the results. 

Table 2. Performance on novel attacks 

Model AUC F1 Score 
VAE 0.64 0.61 

VAE-GAN 0.72 0.68 
AAE 0.81 0.76 

Again, the AAE significantly outperforms the other two models, with 
an AUC of 0.81 and F1 score of 0.76. The VAE-GAN achieves reasonable but 
lower performance. The VAE fails to adequately detect the novel attacks, 
indicating that it has overfit on the training data. The AAE's superior 
generalization performance highlights the benefits of its regularize training 
approach. 

5.5 Runtime Performance 
In addition to detection accuracy, the runtime performance of the 

models was compared by measuring the average time taken to process a 
batch of 128 samples. The average batch processing times are shown in Table 
3. 

Table 3. Average batch processing time 

Model Time (ms) 
VAE 18 

VAE-GAN 62 
AAE 29 

The VAE is the fastest model due to its simple architecture. The 
additional discriminator and generator networks make the VAE-GAN 
approximately 3-4x slower. The AAE is only slightly slower than the VAE due 
to the additional computations involved in matching the posterior 
distribution. Overall, the small differences in inference time imply that the 
models could all be practically deployed for real-time anomaly detection. 
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Our research experimental results demonstrate that the AAE achieves 
the best performance for detecting anomalies and generalizing to new 
attacks in network intrusion data. The enforced latent space regularization 
provides clear advantages over standard VAEs and VAE-GANs. The VAE-GAN 
does outperform the basic VAE, showing the benefits of incorporating 
adversarial training. All three models achieve reasonable computational 
performance for real-time deployment. 

6. CONCLUSION 
This study presented a comparative evaluation of variational 

autoencoders (VAEs), VAE-GANs, and adversarial autoencoders (AAEs) for 
anomaly detection in network intrusion detection. The models were trained 
and validated on the NSL-KDD dataset containing different types of cyber-
attacks. The experiments demonstrated that AAEs achieve the best 
performance for detecting known and unknown anomalies, with AUC scores 
up to 0.96 on some attack categories. The enforced latent space 
regularization of AAEs results in more useful representations compared to 
standard VAEs. The VAE-GAN model exhibited better accuracy than VAEs but 
was outperformed by AAEs, showing the benefits of adversarial training. 

In terms of computational performance, all three models had 
reasonable batch processing times suitable for real-time deployment. The 
VAE was the fastest while the VAE-GAN was slower due to the additional 
discriminator network. The key advantage of AAEs is their ability to 
generalize about new types of attacks not present in the training data. The 
AUC of 0.81 on novel attacks highlights the superiority of AAEs compared to 
other deep anomaly detection techniques. 

Overall, this comparative study provides strong evidence for using 
AAEs as an effective approach for intrusion detection. The results guide the 
selection of appropriate deep learning architectures for cybersecurity 
applications. However, there are some limitations to this study that could be 
addressed in future work. The models were only evaluated on one dataset, 
and their performance should be validated on other network intrusion 
datasets. Hyperparameter tuning could further optimize the accuracy of the 
models. Additionally, only deep learning-based anomaly detection techniques 
were compared; incorporating comparisons to traditional anomaly detection 
methods would provide more context. 

Future work could explore ensembles and hybrid models that 
combine AAEs with other machine learning approaches. Testing the models 
on streaming data rather than static datasets would better simulate real-time 
deployment. Extending the study to other cybersecurity tasks like malware 
detection could demonstrate the generalizability of the findings. Overall, this 
research provides a solid baseline for applying deep learning advancements 
to network intrusion detection systems. Future work should evaluate real-
time anomaly detection performance on streaming data. 
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