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Abstract  
 
An exponential increase in number of attacks in IoT Networks makes 
it essential to formulate attack-level mitigation strategies. This paper 
proposes design of a scalable Kernel-level Forensic layer that assists 
in improving real-time evidence analysis performance to assist in 
efficient pattern analysis of the collected data samples. It has an inbuilt 
Temporal Blockchain Cache (TBC), which is refreshed after analysis of 
every set of evidences. The model uses a multidomain feature 
extraction engine that combines lightweight Fourier, Wavelet, 
Convolutional, Gabor, and Cosine feature sets that are selected by a 
stochastic Bacterial Foraging Optimizer (BFO) for identification of 
high variance features. The selected features are processed by an 
ensemble learning (EL) classifier that use low complexity classifiers 
reducing the energy consumption during analysis by 8.3% when 
compared with application-level forensic models. The model also 
showcased 3.5% higher accuracy, 4.9% higher precision, and 4.3% 
higher recall of attack-event identification when compared with 
standard forensic techniques. Due to kernel-level integration, the 
model is also able to reduce the delay needed for forensic analysis on 
different network types by 9.5%, thus making it useful for real-time & 
heterogenous network scenarios.   

  
Keywords: IoT, Kernel Layer, TBC, BFO, Forensics. 

  
 

1. INTRODUCTION  
There are several examples of networked devices [1, 2]: smart vehicles 

like unmanned drones and driverless cars, smart appliances, smart household 
companion systems like Amazon Echo and Google Home, and Web of 
Battlefield / Military Things devices, to name a few. Examples of smart vehicles 
include autonomous autos and aerial devices that use Fuzzy Hashed 
Blockchains (FHB) [1, 2, 3]. [2] Smart refrigerators include home assistant 
technologies like Amazon Echo and Google Home. These devices, which also 
include Internet of Things (IoT) devices, generate a lot of data, and that data 
may be quickly transported from one or more source devices to other 
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connected devices or systems [4, 5, 6]. The data or systems holding it may then 
be targeted in attacks, often by people with ulterior motivations like financial 
gain (e.g., selling of data exfiltrated from compromised systems). It is essential 
to have the tools necessary to conduct a comprehensive analysis of the 
impacted digital systems and devices. Digital forensics is the process of 
completing an in-depth analysis of digital devices and data in the context of a 
legal proceeding, such as a criminal or civil investigation via use of Hardware 
based Neural Frameworks (HNF) [7, 8, 9]. Our capacity to analyze all the 
various storage capacities and devices fast is being hampered by the difficulty 
of doing so. The enormous amount of information produced by computers and 
other electronic devices, known as digital forensic data, have been the subject 
of fierce debate for years [5]. Each year, there is an increase in the volume of 
digital forensic data as well as the types of data that are available for forensic 
analysis [6, 7]. This may be due to the proliferation of devices, their variety, 
and the data they generate. Digital forensic data may be compressed using our 
recently released data reduction technique without sacrificing any of the data 
included in the metadata or the original source file format [10, 11, 12]. The 
recent release of it for general use was proof of this. Numerous digital forensic 
and analysis tools, including EnCase, X-Ways Forensic, NUIX, Magnet Forensic 
Internet Evidence Finder (IEF), Intella, and Access Data FTK, may be used to 
analyze and investigate the data subsets [13, 14, 15, 16]. Access Data FTK and 
NUIX are two other well-known business products. The diverse subsets of the 
data are stored in common forensic logical containers (L01) [17, 18, 19, 20]. 
Digital forensic samples may also be examined using a range of programs and 
analytical instruments by mounting them as logical drives. For instance, 
important apps in this area include RegRipper, Windows File Analyzer, and 
NetAnalysis [21, 22, 23, 24]. This puts us in a situation where data may be 
aggregated and mixed for analytical purposes from a wide variety of devices, 
including data from mobile phones and data saved in the cloud via Federated 
Learning and Network Traffic Feature Engineering (FL NTF) [25, 26, 27, 28]. 
This opens up a ton of fresh possibilities. Combining data from several sources 
is a strategy that may help in digital forensic analysis [29, 30, 31, 32]. This is 
due to the possibility that connections between events that first seemed 
unconnected and various pieces of equipment might sometimes provide light 
on a mysterious data set samples [33, 34, 35, 36]. This may lead to discoveries 
or the development of new lines of inquiry, both of which might hasten the 
process of concluding criminal investigations or revive closed case files with 
new evidence sets [37, 38, 39, 40]. This paper suggests the creation of a 
scalable Kernel-level Forensic layer, aiming to enhance the real-time analysis 
of evidence performance and facilitate efficient pattern analysis of collected 
data samples. 
 
2. RELATED WORKS 

Due to the rapid evolution of kernel types, the development of designs 
that are general purpose is an essential component of kernel design. In order 
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to accomplish this goal, a wide variety of various sorts of system models have 
been developed. One illustration of this would be how the authors of [4] 
propose utilizing a support vector machine (SVM) model to choose kernels 
from a group of Internet of Things machine functions. This enables the system 
to choose kernels that are cognizant of latency, energy consumption, and 
performance in accordance with the requirements of the application. The 
research suggests the development of a tool for auditing at the kernel level that 
can evaluate the performance of the network at the kernel level in real time. It 
is possible for the kernel of the IoT network to implement these quality of 
service measures if it can determine the location of the nodes, their energy 
consumption, and a number of other characteristics. For instance, the Android 
kernel was modified in [6] in order to improve the way it manages energy. For 
the purpose of assisting with restricted Internet of Things devices, a 
microkernel architecture is developed, as shown in [7], and this design may be 
tweaked for increased performance. The adaptability of this design makes it 
possible to realize gains in terms of the overall efficiency of the network. The 
deep models that are presented in the work in [8] have exceptional 
performance efficiency, but their initial energy consumption is substantial, 
which makes them unsuitable for use in IoT kernels. It has been shown in [9] 
and [10] that these methods might reduce their processing requirements by 
shifting responsibilities to other individuals. These methods could make use of 
the built-in kernel offloading resources available to them. Clustering of 
Internet of Things nodes and egocentric graph mining are the two methods 
that these models use to accomplish this goal. In [11], high-performance IoT 
kernels are used in order to classify photo sets by the application of these 
models. 

As suggested in [12], enhancing the security of the IoT kernel might be 
accomplished by merging various fuzzy logic methodologies with Binary Static 
Analysis. The kernel may, with the assistance of this evaluation, assign a one-
of-a-kind zone for each embedded IoT microdevice, therefore segregating the 
activity of these microdevices from that of other processes. The inclusion of 
sandbox behavior in this way immediately results in a boost in network 
performance. According to [13], the ability to forecast events could lead to 
even greater improvements in safety and security. The SVM and latent 
Dirichlet allocation (LDA) algorithms allow for the prediction of a wide variety 
of occurrences, such as the failure of a node or connection, among other things. 
For the purpose of improving throughput, super-resolution processing, phase 
detection, and security applications, it is advised that models similar to those 
described in [14], [15], [16], and [17] be used. Previous research [18], [19], 
[20], and [21] suggests that the present kernels of the Internet of Things might 
be updated to give security verification, threading for performance and 
security, domain parameter prediction for improved threat mitigation, and 
high speed IoT performance. Altering the kernels used in this situation, such 
as TizenOS, Real time kernel, etc., results in the introduction of improvements. 
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Models such as Sparse Approximation [22], GPU-based Collaborative 
Filtering [23], Metric-Chisini-Jensen-Shannon Divergence [24], Multi-Kernel 
and Meta-heuristic Feature Selection [25], and Convolutional-Kernel-Readout 
Method [26] have the potential to further improve the performance of the 
Internet of Things. These methods make use of the multithreading and parallel 
processing capabilities of the kernel, which allows them to accomplish the task 
in a shorter amount of time. Hyperspectral remote sensing [27], uplink 
narrowband data rate improvement [28], ultra-low power system-on-chip 
(SoC) architecture [29], and ubiquitous electric power [30] are just a few 
examples of applications that might potentially benefit from the use of these 
powerful techniques. The kernel has been modified in a way that makes this 
possible by shifting execution away from the CPU and onto the underlying 
hardware. The overall performance of the system is improved when the 
processing levels are lowered. According to [31], putting the kernel's security 
at risk may be possible if a malicious kernel implementation had the capability 
to decode assembly-level applications and other binaries. This is because such 
an implementation might potentially compromise the integrity of the kernel. 
This might lead to severe concerns when applying IoT kernels in sensitive 
applications such as the one for disaster prediction outlined in [32]. These 
kinds of defects might lead to incorrect data reporting, which would make it 
more difficult for the operator to take corrective action. The implementation 
of learning models that are suitable for the Internet of Things, as outlined in 
[33], is one possibility among many others. These models may be pre-
programmed to recognize potentially harmful behaviors and provide an alarm 
to the system administrator, who would then be able to take the appropriate 
actions. Additional Internet of Things kernel applications are shown in 
references [34], [35], [36], and [37]. These applications include intrusion 
detection, computation using a Coordinate Rotation Digital Computer 
(CORDIC), separation kernel security, and extension of access. These 
applications' kernel settings have been modified in order to facilitate rapid 
data processing. The reconfigurability of Internet of Things devices is 
improved with the help of ChamelIoT kernel's [38] sophisticated monitoring 
and control capabilities. The performance of sentiment analysis is improved 
by using enhancements to the 6G network as well as high-throughput 
operations, as shown in [39] and [40]. [41] provides information on Zephyr 
OS, which is one of the most well-known kernels for IoT devices. This operating 
system is utilized in the underlying research for the purpose of modification 
and comparison. This is due to the fact that it has a high degree of flexibility 
and is suitable for adoption by a broad variety of IoT manufacturers. 
Sandboxing and buffer management are two methods that are suggested in 
[42, 43] as potential strategies to improve these kernels. Work in [44, 45, 46, 
47] also provides a set of deep learning frameworks for improving security 
performance under different network conditions. Work in [48, 49, 50] 
provides incremental learning models for enhancing classification accuracy 
levels. While work in [51, 52, 53, 54] provide deep learning models to perform 
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incremental learning operations for different network scenarios. It is evident 
that very little research has been done on the topic of modifying the kernel to 
enhance the quality of service and security levels. 

While hardware-based neural frameworks have the potential to 
accelerate digital forensics investigations and improve efficiency, their 
practical implementation requires careful consideration of hardware 
compatibility, data privacy, cost, and scalability. As digital forensic tools and 
technologies continue to advance, hardware acceleration may become a 
crucial component in the investigator's toolkit for handling the ever-increasing 
volume and complexity of digital evidence. Combining Federated Learning and 
Network Traffic Feature Engineering in Digital Forensics provides Enhanced 
privacy, collaborative intelligence, efficient investigations, and automated 
evidence identification. However, the approach has disadvantages such as 
communication overhead, data heterogeneity, security risks, and coordination 
complexity may hinder efficiency and transparency. Some of the pros of FHB 
are robust data integrity and tamper-resistant evidence with transparent 
verification and reliable data provenance while the cons are computational 
overhead and adoption challenges, scalability concerns, and evolving 
regulatory frameworks may pose implementation hurdles. 

 
3. ORIGINALITY  

It is clear, that academics have discussed several different machine 
learning-based model types [41, 42, 43, 44]. When tested against real attacks, 
most of these models perform at the application level, which reduces their 
effectiveness. It is almost hard to adapt most of these models to account for a 
broader variety of variables since they were designed for certain kinds of 
networks [45, 46]. The creation of a Kernel-level Forensic layer will be 
discussed as a potential remedy to these problems in the next section. This 
layer will aid in enhancing real-time evidence processing performance across 
a range of diverse network circumstances. In this research, we examine the use 
of various hardware and data subsets with reduced processing and storage 
needs. Utilizing cloud-sourced data, device data, data reduction, and quick 
analytic approaches, our objective is to assess the value of cross-device and 
cross-case analysis. The effectiveness of the suggested model is assessed and 
contrasted with the normative practices used in forensic investigations in the 
section 5 of this text. 
 
4. SYSTEM DESIGN 

Figure 1 illustrates the design of a scalable kernel-component that is 
compatible with the majority of modern IoT kernels and aids in the efficient 
pattern analysis of collected data samples. The proposed kernel component 
includes a Temporal Blockchain Cache (TBC) that is refreshed after analyzing 
each evidence set. The model proposes using a multidomain feature extraction 
engine that combines lightweight Fourier, Wavelet, Convolutional, Gabor, and 
Cosine feature sets to perform this analysis. A stochastic Bacterial Foraging 
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Optimizer (BFO) selects these feature sets, which aids in the identification of 
high variance features. The selected features are then processed by an 
ensemble learning (EL) classifier comprised of the Nave Bayes (NB), k Nearest 
Neighbor (kNN), Logical Regression (LR), and Multilayer Perceptron (MLP) 
classifier sets. 

 
Figure 1. Design of the Proposed Kernel-level Forensic Layer 
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4.1 Temporal Blockchain Cache (TBC) 
To enable kernel-level immutability of packets, traceability of data 

samples, high speed during retrieval operations and distributed computing 
capabilities, the model uses a Proof-of-Trust (PoT) based blockchain for 
storing packets. The block structure used to store the PoT packets can be 
observed from Table 1 where different kernel-level information sets are 
stored for future analysis. 

 
Table  1.  Block structure used for storing network packets 

Prev. Hash Orig. IP Dest. IP 
Timestamp Sample Sets Meta Data 

Sets 
Kernel-level 

information sets 
Nonce & Trust 

Information 
Sets 

Current 
Hash 

 

The information stored in this block structure includes hash of the 
previous blocks (Phash), IP of originating node and destination nodes (𝐼𝑃), 
Timestamp of the packets (𝑇𝑆), a stochastic nonce value, Meta Data (𝑀𝑒𝑡𝑎) and 
Kernel-level information about the packets and current hash of the block. The 
stochastic nonce value, is generated via Eq. 1, 

𝑛𝑜𝑛𝑐𝑒 = 𝑆𝑇𝑂𝐶𝐻(1,𝑀𝑎𝑥(𝑁))                                                    (1) 

where, 𝑁 represents data-type ranges, and 𝑆𝑇𝑂𝐶𝐻 represents a 
Markovian stochastic process used to generate number sets. The Meta Data 
(𝑀𝑒𝑡𝑎) and Kernel-level information about the packets includes information 
such as packet identifiers, flow rate of the packets, range of values in the 
packets and hashing & encryption constants. The current hash of the block is 
calculated using Secure Hashing Algorithm (SHA256) via Eq. 2, 

𝐵ℎ𝑎𝑠ℎ = 𝑆𝐻𝐴256(𝑃ℎ𝑎𝑠ℎ|𝐼𝑃|𝑆𝑆|𝑇𝑠|𝑀𝑒𝑡𝑎|𝑛𝑜𝑛𝑐𝑒)                            (2) 

where, 𝑃ℎ𝑎𝑠ℎ , 𝐵𝑡𝑦𝑝𝑒 , 𝐵𝑑𝑎𝑡𝑎 , 𝑎𝑛𝑑 𝑇𝑠 represents previous hash, biometric 

type, biometric data, and timestamp of block creation. The hashes are 
generated by reiterating Eq.1 & 2, so that every block hash has unique hash 
sets. After generation of unique hashes, blocks are added to the chain through 
PoT based consensus. The PoT based consensus model evaluates trust-levels 
for neighbouring nodes via Eq. 3, 

𝑇𝐿𝑖 =
1

𝑁𝑀
∑

𝑑𝑗

𝑀𝑎𝑥(𝑑)
+

𝑒𝑗

𝑀𝑎𝑥(𝑒)
+
𝑀𝑎𝑥(𝑇𝐻𝑅)

𝑇𝐻𝑅𝑗

𝑁𝑀

𝑗=1

+
100

𝑃𝐷𝑅𝑗
                                                                                               (3) 
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where, 𝑑, 𝑒, 𝑇𝐻𝑅 & 𝑃𝐷𝑅 represents the delay needed, energy consumed, 
throughput achieved, and packet delivery ratio achieved during previous 𝑁𝑀 
mining requests. This trust level is estimated for all 1-hop neighbouring nodes, 
and then average 𝑇𝐿 is estimated via Eq. 4, 

𝑇𝐿𝑡ℎ =
1

𝑁(1𝐻𝑜𝑝)
∑ 𝑇𝐿𝑖

𝑁(1𝐻𝑜𝑝)

𝑖=1

                                                                                 (4) 

where, 𝑁(1𝐻𝑜𝑝) represents total 1Hop nodes present near to the current 
node that has generated mining requests. Hashes from nodes with 𝑇𝐿 < 𝑇𝐿𝑡ℎ 

are considered, and new blocks are added to current blockchains. Once the 
blockchain is created, and forensic are requested for a particular node, then 
their data samples are collected via hash-matching process. These data 
samples are stored on a similar blockchain temporarily, which assists in 
creation of a set of Temporal Blockchain Caches (TBCs).  

 

4.2 Feature Extraction Process 
Samples stored on TBCs are converted into multidomain features 

ensuring that data confidentiality is maintained while processing, because it is 
not possible to regenerate original sample values from the aggregated feature 
sets and accuracy of classification is improved due to use of highly variant 
features for analysis. To perform this task, initially the collected samples are 
represented into frequency domain using Fourier analysis via Eq. 5, 

𝐷𝐹𝑇𝑖 =∑𝑥𝑗 ∗ [𝑐𝑜𝑠 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓
) − √−1

𝑁𝑓

𝑗=1

∗ 𝑠𝑖𝑛 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓
)]                                                                                  (5) 

where, 𝑁𝑓 represents total number of samples extracted for current set 

of forensic nodes. This feature assists in identification of repetitive analysis 
behaviour for different packet types. These features are extended via use of 
entropy-based cosine components, which are extracted via Eq. 6, 

𝐷𝐶𝑇𝑖 =
1

√2 ∗ 𝑁𝑓
∗ 𝑥𝑖∑𝑥𝑗 ∗ cos [

√−1 ∗ (2 ∗ 𝑖 + 1) ∗ 𝜋

2 ∗ 𝑁𝑓
]

𝑁𝑓

𝑗=1

                                                   (6) 

These components assist in identification of packet energy levels under 
different types of forensic events. Similarly, the convolutional features assist 
in identification of window-based overlapping features via Eq. 7, 
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𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖 = ∑ 𝑥(𝑖 − 𝑎) ∗ 𝐿𝑅𝑒𝐿𝑈 (
𝑚 + 2𝑎

2
)                                                                 (7)

𝑚
2

𝑎=−
𝑚
2

 

where, 𝑚, 𝑎 represents dimensions of different windows & strides, while 
𝐿𝑅𝑒𝐿𝑈 represents a leaky rectilinear unit that is used for activation of these 
features via Eq. 8, 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒 𝑛 𝑥 < 0 ,  

𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑥                                                                                                               (8) 

where, 𝑙𝑎 is a quantization scaling constant, which is used to remove 
negative feature sets. These features are further extended via evaluation of 
Gabor components via Eq. 9, 

𝐺(𝑥, 𝑦)𝑠 = 𝑒
−𝑥`2+𝜕2∗𝑦′2

2∗∅2 ∗ cos (2 ∗
𝑝𝑖

𝜆
∗ 𝑥′)                                                        (9) 

where, 𝑥, 𝑦 are the feature dimensions, while 𝜕, ∅ & 𝜆 represents angular 
and wavelength constants for augmentation of features. These features are 
extended via equations 10 & 11 for identification of approximate & detailed 
Wavelet components. 

𝑊𝑎 =
𝑥𝑖 + 𝑥𝑖+1

2
                                                                                                         (10) 

𝑊𝑑 =
𝑥𝑖 − 𝑥𝑖+1

2
                                                                                                      (11) 

4.3 Bacterial Foraging Optimizer (BFO) 
High variance feature sets are identified using Bacterial Foraging 

Optimization (BFO) technique. First all extracted features are combined to 
obtain a Forensic Feature Set (FFS) and then Bacterial Foraging Optimization 
(BFO) is performed on FFS. This selection assists the classifiers to efficiently 
identify different forensic events, and also introduces non-reversible 
characteristics into the extracted features. To implement the BFO Model the 
following Bacterium reconfiguration constants are used: 

• Total Bacterium that will be initially generated and reconfigured (𝑁𝐵) 
• Total reconfiguration steps or iterations that will be used to process these 

bacterium (𝑁𝐼) 
• Bacterium social learning rates (𝐿𝑟) 
• Set of features which were extracted during multidomain representation 

operations (𝑁𝑓) 
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To start the optimization process N features are stochastically selected 
from the list of multidomain features via Eq.12, 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑁𝑓 , 𝑁𝑓)                                                                                                  (12) 

As per this selection, class-level variance is identified and marked as 
Bacteria fitness via Eq.13, 

𝑓 =
√
  
  
  
  
 

∑ (𝑓𝑎 −
𝑚
𝑎=1

∑
√∑ (𝑓𝑗 −

∑ 𝑓𝑎
𝑛
𝑎=1
𝑛

)2𝑛
𝑗=1

𝑛 − 1
𝑚
𝑖=1

𝑚
)2

𝑚 − 1
                                 (13) 

where, 𝑚, 𝑛 are the features of current forensic-event class, and other 
forensic-event classes, such that 𝑁 = 𝑚 + 𝑛, while 𝑓𝑎 is the value of the 
multidomain features. Based on these solutions bacteria chemotaxis threshold 
is calculated via Eq.14, 

𝑓𝑡ℎ =∑𝑓𝑖 ∗
𝐿𝑟
𝑁𝑠

𝑁𝑠

𝑖=1

                                                                                         (14) 

Bacterium with 𝑓 > 𝑓𝑡ℎ are reproduced, and passed to the next 
iterations, while others are eliminated in the current set of iterations. 
Eliminated bacteria are regenerated as follows: 

• Stochastic features are selected via Eq.12 & 13, where only 
𝑁

2
 new feature 

sets are used, while other 
𝑁

2
 are selected stochastically from reproduced 

bacterium solutions. 
• For these 𝑁 updated features, fitness is estimated via Eq.14, and threshold 

is evaluated to enhance iterative selections. 

This process is repeated continuously for 𝑁𝑁 iterations, and finally a set 
of features is selected via Eq.15, 

𝐹𝑓𝑖𝑛𝑎𝑙 = ⋃ 𝐹𝑒𝑎𝑡𝑖

𝑓>2𝑓𝑡ℎ

𝑖=1

                                                                      (15) 

where, 𝐹𝑒𝑎𝑡𝑖 are the features selected by the 𝑖𝑡ℎ bacteria solutions.  
 

4.4 Ensemble Classification 
The features identified through BFO are used to identify different 

forensic events via use of an ensemble learning model, which combines Naïve 
Bayes (NB), k Nearest Neighbors (kNN), Support Vector Machine (SVM), 
Multilayer Perceptron (MLP), and Deep Forest (DF) set of classifiers. These 
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classifiers are reconfigured as per their hyperparameters mentioned in Table 
2, which assists in enhancing their accuracy of forensic investigations. 

 
Table 2. The ensemble learning classifier parameters for high efficiency levels. 

Classifier Used for 
Forensic Investigations 

Parameter Sets for these classifiers 

Naïve Bayes (NB) 
Level of Priors = 

∑ (𝑓𝑗−
∑ 𝑓𝑎
𝑛
𝑎=1
𝑛

)2𝑛
𝑗=1

𝑛−1
            (16) 

where, 𝑛 are total number of features, while 𝑓 are the 
values of these features. 
Smoothing Constant = 𝐿𝑟  

Logistic Regression (LR) Use Normalized Samples = True 

Tolerance = 
𝐿𝑟

𝑁𝑐
                (17) 

where, 𝑁𝑐 are total number of forensic event classes. 
Maximum Iterations  
(MI) = 𝑁𝑐 ∗ 𝑁𝑖                (18) 

Multilayer Perceptron 
(MLP) 

Total Hidden Layers = 𝑁𝑐 
Used Solver = SGD (Stochastic Solver with Gradient 
Descent) 
Rate of neuron learning = 𝐿𝑟  

SVM Coefficient of regularization = 𝐿𝑟  
Used Kernel = Tan Sigmoid 

Weights of class = (𝑓𝑗 −
∑ 𝑓𝑎
𝑛
𝑎=1

𝑛
)2                      (19) 

where, 𝑗 is the class number used for evaluations 
DF Total Trees = 𝑁𝑐 ∗ 𝑁𝐵 

Depth of the Forest = 𝑁𝑖 ∗ 𝑁𝑐 

 
The values of these parameters are highly dynamic, and they are 

modified for each evaluation for improving accuracy of forensic analysis. The 
classes obtained by these classifiers are fused by a boosting process, which is 
done via Eq.20, as follows, 

𝑐𝑜𝑢𝑡 = 𝐶(𝑁𝐵) ∗ 𝐴(𝑁𝐵) + 𝐶(𝐿𝑅) ∗ 𝐴(𝐿𝑅) + 𝐶(𝑀𝐿𝑃) ∗ 𝐴(𝑀𝐿𝑃) + 𝐶(𝑆𝑉𝑀) ∗ 𝐴(𝑆𝑉𝑀)
+ 𝐶(𝐷𝐹) ∗ 𝐴(𝐷𝐹)                                                                                         (20) 

where, 𝐶 & 𝐴 represents the forensic event class, and accuracy of 
classification for the given classifier under the given forensic events. This 
fusion of classifiers assists in obtaining high-efficiency classifications with 
kernel-level security due to integration of blockchains. 

Performance of this model in terms of accuracy of investigation, 
precision, recall & delay needed for investigations along with IoT network’s 
QoS parameters can be observed from the next section. 
 
5. EXPERIMENT AND ANALYSIS 

The proposed model discusses design of a scalable kernel-component 
that is compatible with the majority of modern IoT kernels and aids in the 
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efficient pattern analysis of collected data samples. The proposed kernel 
component includes a Temporal Blockchain Cache (TBC) that is refreshed after 
analyzing each evidence set. The model proposes using a multidomain feature 
extraction engine that combines lightweight Fourier, Wavelet, Convolutional, 
Gabor, and Cosine feature sets to perform this analysis. A stochastic Bacterial 
Foraging Optimizer (BFO) selects these feature sets, which aids in the 
identification of high variance features. The selected features are then 
processed by an ensemble learning (EL) classifier comprised of the Nave Bayes 
(NB), k Nearest Neighbors (kNN), Logical Regression (LR), and Multilayer 
Perceptron (MLP) classifier sets.  

To validate the security performance this model was tested on CSafe 
Forensics Data Samples, NIST Special Database, Computer Forensic Reference 
Dataset Samples, Breitinger Data Samples. All these data samples are publicly 
available, and were combined to identify network intrusions, packet-level 
attacks, and normal data flows. 

Based on this strategy, the PoT blockchain’s performance was estimated 
in terms of storage delay (d), energy needed for storage (E), throughput (T) 
and miner PDR during mining operations. These parameters were estimated 
via equations 21, 22, 23 & 24 and compared with FHB [2], HNF [8], and FL NTF 
[28] in Table 3. 

𝑑 =
1

𝑁𝑡
∑𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑖

𝑁𝑡

𝑖=1

                                                                     (21) 

where, 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 & 𝑡𝑠𝑡𝑎𝑟𝑡 represents the timestamps for completing and 

starting the evaluation process, while 𝑁𝑡 are total number of events used 
during these evaluations. 

𝐸 =
1

𝑁𝑡
∑𝑒𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖

𝑁𝑡

𝑖=1

                                                                              (22) 

where, 𝑒 represents the energy needed by miner nodes during mining 
operations. 

𝑇𝐻𝑅 =
1

𝑁𝑡
∑

𝐵𝑟𝑥𝑖
𝑑𝑖

                                                                                                         (23)

𝑁𝑡

𝑖=1

 

where, 𝐵𝑟𝑥 represents total number of currently mined blocks without 
errors. 

𝑃𝐷𝑅 =
1

𝑁𝑡
∑

𝐵𝑟𝑥𝑖
𝐵𝑡𝑥𝑖

𝑁𝑇

𝑖=1

                                                                                                            (24) 
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where, 𝐵𝑡𝑥 represents total number of blocks transmitted during the 
mining process.  

 

Table 3. QoS performance under different network scenarios 

Params. Used FHB [2] HNF [8] FL NTF [28] KFR EIAN 

d (us) 2101 3728 2619 2030 

E (mJ) 23.9 24.3 29.8 19.4 

THR (kbps) 232 159 213 247 

PDR (%) 89.1 75.7 87.8 98.5 

 

To validate the event classification performance, the model was 
evaluated in terms of accuracy (A), precision (P), and recall (R) levels, which 
were estimated via equations 25, 26 and 27 as follows, 

𝐴 =
1

𝑁𝑐
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖
𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑁𝑐

𝑖=1

                                                           (25) 

where, 𝑁𝑐  are total number of event classes for which the model was 
evaluated, while 𝑡 & 𝑓 represents standard true & false rate sets. 

𝑃 =
1

𝑁𝑐
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑁𝑐

𝑖=1

                                                                                   (26) 

𝑅 =
1

𝑁𝑐
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑁𝑐

𝑖=1

                                                                                   (27) 

The positive rates indicate classification of events in correct categories, 
while negative rates indicate their classification into incorrect categories. As 
per the similar strategy opted for identification of QoS performance, the 
accuracy performance measures were evaluated w.r.t. different number of 
forensic samples (NFS) as shown in Table 4.  

The proposed forensic event classification model uses BFO for 
identification of highly variant feature sets, which assists the model to improve 
its forensic classification performance under different event types. It can be 
observed that the proposed model is able to improve the forensic classification 
precision by 0.5% when compared with FHB [2], 0.4% when compared with 
HNF [8], and 8.5% when compared with FL NTF [28] under different use cases. 
This precision is a measure of consistency and is improved due to use of BFO 
for identification of highly consistent feature sets, that assists in enhancing 
event detection performance for different use cases. Similarly, the recall of 
classification of these events can be observed from Table 5. It can be observed 
that the proposed model is able to improve recall of forensic event 
classification by 8.3% when compared with FHB [2], 4.9% when compared 
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with HNF [8], and 2.5% when compared with FL NTF [28] under different use 
cases. The reason for this enhancement is use of low-complexity feature sets, 
and their classification via ensemble classification process. The delay needed 
for this model is depicted in Figure 2. 

 

Table 4. Forensic event classification accuracy for different models 

NFS Acc. FHB [2] Acc. HNF [8] Acc. FL NTF [28] Acc. KFR EAIN 

116k 83.44 88.78 84.96 93.12 

174k 83.57 89.12 85.19 93.37 

232k 83.68 89.45 85.40 93.60 

290k 83.79 89.78 85.61 93.83 

350k 83.92 90.11 85.83 94.07 

412k 84.05 90.45 86.06 94.31 

475k 84.20 90.78 86.30 94.57 

534k 84.36 91.11 86.54 94.82 

582k 84.53 91.45 86.78 95.08 

640k 84.69 91.80 87.04 95.35 

708k 84.86 92.16 87.30 95.63 

767k 85.01 92.51 87.54 95.89 

790k 85.15 92.86 87.77 96.15 

873k 85.29 93.20 88.01 96.40 

941k 85.43 93.55 88.24 96.66 

1M 85.57 93.88 88.47 96.90 

 
 

Table 5. Forensic event classification recall for different models 
NFS Rec. 

FHB [2] 
Rec. HNF 

[8] 
Rec. FL 

NTF [28] 
Rec. 
KFR 
EAIN 

116k 80.09 80.62 83.63 87.25 
174k 80.30 80.99 83.93 87.53 
232k 80.47 81.35 84.22 87.81 
290k 80.61 81.71 84.51 88.09 
350k 80.76 82.07 84.82 88.38 
412k 80.92 82.44 85.13 88.68 
475k 81.11 82.82 85.45 88.99 
534k 81.33 83.21 85.76 89.30 
582k 81.58 83.62 86.07 89.63 
640k 81.85 84.05 86.38 89.96 
708k 82.14 84.52 86.70 90.32 
767k 82.38 84.94 87.00 90.64 
790k 82.61 85.35 87.30 90.95 
873k 82.83 85.76 87.61 91.27 
941k 83.02 86.15 87.92 91.58 
1M 83.20 86.52 88.22 91.87 
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Figure 2. Forensic event classification delay for different models 

 

Based on this evaluation and its visualization in Figure 2, it can be 
observed that the proposed model is able to improve speed of forensic event 
classification by 9.5% when compared with FHB [2], 12.4% when compared 
with HNF [8], and 0.5% when compared with FL NTF [28] under different use 
cases. The reason for this enhancement is use of low-complexity feature sets, 
and their classification via ensemble classification process. Due to these 
optimizations, the proposed model is highly useful for a wide variety of 
forensic investigation use cases. 

The improvement in mining speed is attributed to the use of Proof-of-
Time (PoT) based consensus mechanism in the proposed model. This 
consensus mechanism incorporates temporal delay metrics during mining 
operations, which allows for more efficient and faster processing of data. As a 
result, the delay in mining operations is significantly reduced, leading to 
improved mining speed and overall system performance. The use of PoT-
based consensus is a key feature of the proposed model, and it has 
demonstrated its effectiveness in improving the efficiency and speed of mining 
operations. The improvement in forensic classification accuracy is attributed 
to the use of boosted ensemble classification in the proposed model. Boosted 
ensemble classification is a machine learning technique that combines the 
output of multiple classifiers to improve classification performance. In the 
proposed model, this technique is used to enhance event detection 
performance for different use cases. By combining the results of multiple 
classifiers, the proposed model is able to accurately classify events under 
different scenarios, leading to improved forensic classification accuracy. 
 
6. CONCLUSION 

The proposed model is able to improve its forensic classification 
performance across a wide variety of event types because it makes use of 
multidomain feature fusion and combines the results of those fusions with BFO 
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and ensemble learning classifiers. It was found that the proposed model has 
the potential to improve the accuracy of forensic classification by 10.5% in 
comparison to FHB [2], 2.9% in comparison to HNF [8], and 5.9% in 
comparison to FL NTF [28] in a variety of use cases. This accuracy is improved 
through the utilisation of boosted ensemble classification, which contributes 
to the improvement of the overall performance of event detection across a 
variety of use cases. The BFO algorithm is used in the proposed forensic event 
classification model for the purpose of identifying highly variant feature sets. 
This helps to improve the model's classification performance for a wide variety 
of event types. In terms of classification consistency, the proposed model is 
able to improve forensic classification precision by 0.5% when compared to 
FHB [2], 0.4% when compared to HNF [8], and 8.5% when compared to FL NTF 
[28] for a variety of use cases. These improvements were achieved by 
comparing the proposed model to FHB [2], HNF [8], and FL NTF [28]. This 
precision is a measure of consistency, and it is improved by the use of BFO to 
identify highly consistent feature sets, which in turn improves the 
performance of event detection for a variety of different use cases. In terms of 
scalability, it was found that the proposed model can improve the recall of 
forensic event classification by 8.3% when compared to FHB [2], 4.9% when 
compared to HNF [8, and 2.5% when compared to FL NTF [28] for a variety of 
use cases. These percentages were determined by comparing the proposed 
model to FHB [2], HNF [8], and FL NTF [28] respectively. The utilisation of low-
complexity feature sets and the classification of those sets through the 
application of an ensemble classification process were the primary 
contributors to this improvement. As a result of these enhancements, the 
model that is being proposed is highly applicable to an extensive variety of use 
cases involving forensic investigations. In future, performance of this model 
may be validated on different kernel deployments, and can be enhanced via 
use of hybrid bioinspired models that allow for low-complexity feature 
selection and improved classification under real-time scenarios. This 
performance can also be improved via use of reinforcement learning with 
high-density feature extraction using a fusion of Long-Short-Term Memory 
(LSTM) with Gated Recurrent Units (GRU), and use of Auto Encoders (AE) with 
Q-Learning operations. This will allow the model to enhance its performance 
for a wide variety of real-time on-field deployments.  
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