
EMITTER International Journal of Engineering Technology
Vol. 10, No. 2, December 2022, pp. 246~261

DOI : 10.24003/emitter.v10i2.705

Copyright © 2022 EMITTER International Journal of Engineering Technology ‐ Published by EEPIS

246

Web Application Security Education Platform Based on
OWASP API Security Project

Muhammad Idris, Iwan Syarif, Idris Winarno

Department of Information and Computer Engineering

Politeknik Elektronika Negeri Surabaya (PENS), Surabaya, Indonesia
Correspondence Author: idris@polibatam.ac.id

Received August 14, 2022; Revised September 16, 2022; Accepted October 17, 2022

Abstract

The trend of API-based systems in web applications in the last few
years keeps steadily growing. API allows web applications to interact
with external systems to enable business-to-business or system-to-
system integration which leads to multiple application innovations.
However, this trend also comes with a different surface of security
problems that can harm not only web applications, but also mobile
and IoT applications. This research proposed a web application
security education platform which is focused on the OWASP API
security project. This platform provides different security risks such
as excessive data exposure, lack of resources and rate-limiting, mass
assignment, and improper asset management which cannot be found
in monolithic security learning application like DVWA, WebGoat, and
Multillidae II. The development also applies several methodologies
such as Capture-The-Flag (CTF) learning model, vulnerability
assessment, and container virtualization. Based on our experiment,
we are successfully providing 10 API vulnerability challenges to the
platform with 3 different levels of severity risk rating which can be
exploited using tools like Burp Suite, SQLMap, and JWTCat. In the
end, based on our performance experiment, all of the containers on
the platform can be deployed in approximately 16 seconds with
minimum storage resource and able to serve up to 1000 concurrent
users with the average throughput of 50.58 requests per second,
96.35% successful requests, and 15.94s response time.

Keywords: API Security, OWASP, CTF, Risk Rating, Container.

1. INTRODUCTION
The growth of the API-based application ecosystem continues to grow

globally. Postman reports that there have been 30 million API collections and
855 million API traffic requests made by users since 2020 [1]. The use of APIs
enables rapid and innovative application development. The API allows
applications to interact with external systems and also can be used to
develop various application platforms such as the Internet of Things (IoT),
mobile applications, and web applications. Unfortunately, behind this

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

247

massive growth, there are also potential threats to the API itself. API is a
double-edged sword. on the one hand, APIs help in expanding the business
through shared value and utility, but on the other hand, APIs pose security
and privacy problems [2]. Salt security reports industry findings that have
demonstrated that APIs are the dominant application attack vector today.
Recorded in just 6 months, in June 2021 the overall API traffic from its
customers increased by 141% while malicious traffic also grew by 348% [3].

The effort to understand and learn about security risks is also difficult
to carry out considering that testing or hacking can be considered a criminal
act without permission from the application owner according to ITE Law
Article 31 paragraphs 1,2 and 3 [4]. In addition, there is currently no
standard for specifying educational computing environments, making it
impossible to share them without having to manually rebuild and redeploy
most of each environment every time it is needed [5]. Therefore, popular
applications such as WebGoat, Mutillidae, and DVWA are commonly used as a
target for exploitation testing as well as learning media in application
security education. These three applications provide several sample
vulnerability case studies that users can learn and test in a legal environment.
However, API and web vulnerabilities have different security risks. The API
security risk report was first issued by OWASP in 2019 [6]. This report is the
first and most recent of the OWASP security reports on API security risks.
Thus, exploratory efforts in understanding API-based applications are still in
a process that continues to develop both in terms of implementation and
security aspects. Therefore, the main goal of the proposed application is to
create a CTF-based environment that provides API security challenges using
container virtualization to help students, teachers, security testers, and web
developers in understanding the problems faced in API-based systems.

2. RELATED WORKS

The concept of developing application security learning systems or
application security testing is not a new approach in cyber security education
and research. In recent years, the implementation of this type of application
has also been utilized through various security topics. In cyber security
simulation and learning application, Shin S, Seto Y, Kasai Y, Ka R, Kuroki D,
Toyoda S et al [7] built a learning media platform called CyExec to help cyber
security learning systems with attack and defense programs. The program is
then built-in virtual box and docker technology. CyExec uses traditional web
technology in the attack by using WebGoat as an experimental target. Su J,
Cheng M, Wang X, and Tseng S [8] proposed a scheme to create a simulation
test to assess student learning outcomes online in web security subjects
called the SimTI-WS scheme. The focus topic is discussed about CSRF based
on WebGoat. A different approach is proposed in this research to provide an
online quiz web system that works by comparing the submitted answers
from users in the form of code reactions and data analysis on the server-side.
Ping C, Jinshuang W, Lanjuan Y and Lin P [9] developed a teaching media

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

248

application that was implemented technically through PHP and MYSQL
technology to simulate various SQL injection vulnerabilities in web
applications. Lehrfeld M and Guest P [10] created a vulnerable web
application for learning media by adopting the Capture-The-Flag (CTF) model
to assist students in conducting ethical hacking simulations that focus on web
reconnaissance, password cracking, and SQL injection. Oh S, Stickney N,
Hawthorne D, Mattdhews S [11] create a tool for teaching cyber security
techniques using Raspberry Pi 4 called Cyber Range. This proposed learning
tool utilizes Docker as container virtualization which runs all 14
vulnerabilities in DVWA as a learning object. Mansurov A [12] created a CTF-
based framework for information security learning which can be virtualized
using various hypervisors such as KVM, OpenVZ, and vSPhere. The proposed
framework has some tasks such as local vulnerability, web vulnerability,
steganography, forensic, and cryptography. In web application security, the
tasks are mainly created for vulnerabilities that can be exploited using SQL,
XSS, and code injection. Aziz N, Shamsuddin S, and Hassan N [13]

implemented a security learning environment called KICT Secure Coding
Learning Package. This proposed application consists of 3 main components
of secure coding learning: SCALT, WebGoat, and specific vulnerabilities in
Java, C, and C++ programming languages.

Vulnerable applications are not only utilized as learning media but can
also be used as attack targets to test a new concept, model, methodology, and
tools which are related to the application security. Baş Seyyar M, Çatak F, and
Gül E [14] studied a web vulnerability scanning application through access
log files on a server and compared the accuracy results with the model
proposed in the study. In the comparison model, the target user is no longer
provided by the researcher from the start, but instead utilizes a popular
vulnerable application, namely DVWA. Kritikos K, Magoutis K, Papoutsakis M,
and Ioannidis S [15] surveyed vulnerability assessment (VA) tools and
databases for cloud-based web applications by utilizing vulnerable
applications such as DVWA and WebGoat as metrics for the accuracy and
capabilities of each. each VA application in scanning for vulnerabilities
Priyanka A and Smruthi S [16] conducted experiments on web vulnerabilities
and compared each software tool that could detect or exploit vulnerabilities
in DVWA applications. Amankwah R, Chen J, Kudjo P, and Towey D [17] used
WebGoat and DVWA to conduct experiments in evaluating the performance
of vulnerability scanning applications, both open-source and commercial
applications. Saleem S, Sheeraz M, Hanif M, and Farooq U [18] made a model
with machine learning to detect attacks on web servers. In classifying the
model, the dataset used is a server access log file consisting of normal access
logs, SQL injection attack logs, XSS attack logs, and Denial of Service (DOS)
attack logs against DVWA applications. Steiner S, de Leon D, and Jillepalli A
[19] use Multillidae vulnerable web application as a study case for
developing a non-least privilege security model for its DBMS database
permissions. Alazmi S and De Leon D [20] benchmarked 30 web vulnerability

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

249

scanners towards OWASP Web Security 2010, 2013, 2017, and 2021. To
conduct their experiment in finding the effectiveness of all the vulnerability
scanners, DVWA and Mutillidae are utilized as the target testing. Rangnau T,
Buijtenen R, Fransen F, and Turkmen F [21] utilized WebGoat as target
testing to study the integration of continuous security testing into CI/CD
pipeline. Later on, this research also conducts a security testing analysis of
dynamic penetration testing and fuzzing techniques by using OWASP ZAP,
JMeter, and Selenium. Yang J, Tan L, Peyton J, and A Duer K [22] proposed a
Security Analysis Security Testing (SAST) tool called Priv. In their final
experiment of Priv, the tool is tested against the source code of WebGoat and
other vulnerable web applications to help highlight their proposed model’s
accuracy and effectiveness. Chen P, Zhao M, Wang J, Yu H [23] introduced a
DVWA-based teaching assistant system that adopts a multi-round attack
defense model to organize experimental teaching to promote student’s
enthusiasm for learning the processes of securing web applications.

3. ORIGINALITY

In recent years, the research on API topics is increasing. However, in
terms of security, it has not been thoroughly explored. The dominant topics
in API research, in general, are still related to design and usability, all of
which belong to the technological domain of classification schemes [24].
Therefore, this research tries to discuss the security aspect of API through
the implementation and security analysis of the REST API-based system. The
originality of the proposed application in this research also comes from the
security risks scope which is not covered by some popular web applications
such as DVWA, WebGoat, and Mutillidae. The security risks that will be
discussed and implemented in this research are based on the OWASP API
security risks 2019 which are:

▪ API1: Broken Object Level Authorization
▪ API2: Broken Authentication
▪ API3: Excessive Data Exposure
▪ API4: Lack of Resources and Rate Limiting
▪ API5: Broken Function Level Authorization
▪ API6: Mass Assignment
▪ API7: Security Misconfiguration
▪ API8: Injection,
▪ API9: Improper Assets Management
▪ API10: Insufficient Logging and Monitoring

Although there is a clear difference in terms of system architecture

between the proposed platform (microservice) and existing vulnerable
applications (monolithic), there are some vulnerability similarities in the
OWASP API project. For example, both architectures are prone to SQL
injection and command injection vulnerability. Detail comparison of
vulnerability similarity is described in table 1.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

250

Table 1. Security Learning Application Against OWASP API Security
OWASP API

Security
DVWA WebGoat Multillidae II

API1 - Access Control
Flaws

Insecure Direct Object
References

API2 Weak Session
IDs

Authentication
Flaws, JWT Tokens

and Password Reset

Authentication Bypass,
Privilege Escalation, and
Username Enumeration

API3 - - -
API4 - - -
API5 - Missing Function

Level Access Control
Missing Function Level

Access Control
API6 - - -
API7 - Insecure

Communication
Directory Browsing, SSL
Misconfiguration, CORS
Misconfiguration

API8 SQL Injection,
XSS Injection,

Command
Injection

SQL Injection, XSS
Injection, Command

Injection

SQL Injection, XSS
Injection, Command

Injection

API9 - - -
API10 Brute Force Logging Security Log disclosure

Apart from the security risk scope, we also implement CTF challenges,
levels, and a scoring system to the proposed application. Unlike DVWA which
uses a skill-based level for its challenges, the level of each challenge in this
proposed application is determined based on qualitative risk assessment
methodology. The main focus of the qualitative risk assessment is the
likelihood of an event rather than its statistical probability. These likelihoods
are derived from analyzing the threats and vulnerabilities and then
generating a qualitative value for the asset or assets that may be affected
[25]. In this research, we chose OWASP risk rating methodology to provide a
risk-based level challenge by determining the severity rating of each
challenge that is classified into 3 levels which are medium, high, and critical.
Lastly, we also proposed a container-based environment using Docker to
ease the installation and configuration of requirements to run the proposed
application either in a personal environment or a cyber security lab
environment to accommodate multiple users simultaneously.

4. SYSTEM DESIGN

In achieving the goal of this research in providing an API security risk

learning system, the system design is shown in Figure 1.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

251

Figure 1. System design of the proposed platform

Docker is utilized as the container virtualization for the proposed

application. With Docker container, we can maximize the simulation of each
challenge vulnerability impact and provide a lightweight system at the same
time. For the CTF-based learning implementation, users can browse the
security learning portal to access the CTF core system features such as
challenge objective and description, vulnerability references from CVE
(Common Vulnerability Enumeration) and CWE (Common Weakness
Enumeration) reports, challenge level based on its risk, user score, flag
submission, and recommendation of countermeasures. The user and system
interaction in a CTF-based system is explained in figure 2.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

252

Figure 2. User-system interaction in the CTF learning model

 Like any other software development, a challenge is created to serve a

basic function of the REST API-based system. Starting from the basic function
implementation, vulnerability and flag are intentionally injected into the
system such as vulnerability in API endpoint parameter, response, or
configuration. The proposed vulnerabilities are designed based on OWASP
API security risk and adopted from vulnerability reports in CVE and CWE.
The specification of the challenge design is described in table 2.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

253

Table 2. Challenge design on the proposed application
No. API Endpoint OWASP

Risk
Challenge Objective CVE

ID
CWE

ID
1 GET

/grade/{id}
API1 Expose another user’s

private grade information
by tampering with the
request in the API grade
endpoint.

CVE-
2021-
44877

CWE-
285

2 POST /login API2 Log in to the system by
cracking insecure and
weak JWT secret key

CVE-
2021-
40494

CWE-
287

3 GET /course/{id} API3 Expose the lecturer’s
personally identifiable
information (PII) on the
course page

CVE-
2019-
20360

CWE-
213

4 POST /signin API4
API10
API2

Use a credential stuffing
attack to authenticate one
of the administrator
accounts

CVE-
2022-
24044

CWE-
307

5 DELETE /api/
announcement
/{id}

API5 Delete announcement as
non-administrator
account

CVE-
2019-
0039

CWE-
285

6 POST
/register

API6
API2

Gain admin role access by
adding role key in JSON
body request of API
registration

CVE-
2021-
27582

CWE-
915

7 GET /file API7 Exploit improper file and
folder permission
configuration on the API
server

CVE-
2020-
29582

CWE-
552

8 GET
/lecturer/{id}

API8 Gain access to the
database server using
vulnerable API endpoint
parameter

CVE-
2022-
29603

CWE-
89

9 GET
/api/v1/students

API9
API3

Find an old or beta
version of API on the
system to steal all of the
student’s PII.

CVE-
2021-
39905

CWE-
1059

10 GET
/api/server?info=
{command}

API8
API5

Execute list home
directory command in API
endpoint as a non-
administrator user

CVE-
2021-
40412

CWE
-77

Next, we determined the risk rating on every challenge using the

OWASP risk rating methodology. OWASP risk rating is a method to measure
application security risk based on the likelihood and impact that is divided

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

254

into 16 different qualitative questions [26]. The likelihood is evaluated based
on their threat agents and vulnerability factors, then the impact is evaluated
based on technical and commercial factors. The formula that is used to
determine the severity risk rating in this proposed application is:

▪ Threat Agent Factors = (Skill Level + Motive + Opportunity + Size)/4

▪ Vulnerability Factors = (Ease of Discovery + Ease of Exploit + Awareness +

Intrusion Detection)/4

▪ Technical Impact Factors = (Loss of Confidentiality + Loss of Integrity + Loss of

Availability + Loss of Accountability)/4

▪ Business Impact Factors = (Financial Damage + Reputation Damage + Non-

Compliance + Privacy Violation)/4

After the four main factors are obtained, the likelihood and impact can be
calculated using the following formula:

▪ Likelihood = (Threat Agent Factors + Vulnerability Factors)/2

▪ Impact = (Technical Impact Factors + Business Impact Factors)/2

Furthermore, by using the average value and the level of likelihood and
impact in the previous step, the overall severity risk level can be determined
from the matrix as shown in table 3 and table 4.

Table 3. Likelihood and Impact Classification Matrix
Level Likelihood dan Impact

0 - <3 LOW
3 - <6 MEDIUM
6 - 9 HIGH

Table 4. Overall Severity Risk Level Matrix

Overall Risk Severity
Impact HIGH Medium High Critical

MEDIUM Low Medium High
LOW Note Low Medium
 LOW MEDIUM HIGH

 Likelihood

5. EXPERIMENT AND ANALYSIS
The server used in the local deployment process is using a computer

with specifications of i3 12100f 3.3 GHz processor, 16 GB of DDR4 RAM,
500GB SSD, Ubuntu WSL2 on Windows 10, and Docker. To create a platform
for the proposed application, at the initial stage, we implemented 3 base
Docker images as described in table 5.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

255

Table 5. Docker Image of Proposed Application
Image Name Specification Image Source Image Size
MicroChallenge Apache2 and PHP8 Dockerfile 591.27 MB
MySQL MySQL 5.7 MySQL Official

Docker Hub
449.61 MB

Nginx Nginx Nginx Official
Docker Hub

141.52 MB

In Docker, we can create our unique image with Dockerfile to bundle

all of the technology required by the proposed application. This image called
MicroChallenge will be used for API servers to run all of the specifications of
challenges which are based on PHP programming language. For the database
server and API gateway, both images are pulled directly from the official
Docker Hub. Finally, after 3 images were created, we deployed an
environment for the proposed platform. The result of this deployment is
described in table 6.

Table 6. Docker deployment of the proposed platform

Container Name Docker Image Deployment
Time

Container
Initial Size

Challenge1 MicroChallenge 14.1s 251B
Challenge2 MicroChallenge 13.8s 251B
Challenge3 MicroChallenge 13.6s 251B
Challenge4 MicroChallenge 15.2s 251B
Challenge5 MicroChallenge 14.8s 251B
Challenge6 MicroChallenge 15.4s 251B
Challenge7 MicroChallenge 14.4s 251B
Challenge8 MicroChallenge 13.2s 251B
Challenge9 MicroChallenge 13.0s 251B
Challenge10 MicroChallenge 13.8s 251B
Challenge_Portal MicroChallenge 16.9s 251B
Challenge_Database MySQL 5.2s 4B
Portal_Database MySQL 15.5s 4B
API_Gateway Nginx 16.0s 1.09KB

Based on table 6 result, the container initial size of each challenge is
relatively small because all of the source code was not mounted inside the
container. The source code is available in the Docker host and can be
accessed to each deployed container with Docker’s volume mechanism.
Furthermore, the vulnerability assessment of penetration testing and risk
analysis methodology based on OWASP risk rating on each challenge was
executed. The result of this assessment is described in table 7.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

256

Table 7. Vulnerability assessment of proposed challenges
Container

Name

Penetration
Testing
Tool(s)

Vulnerable
Asset

Exploitation
Technique

Likeli
hood
Level
(0-9)

Impact
Level
(0-9)

Challenge1 Burp Suite API
Endpoint
Request

API Parameter
Tampering

7.25 5

Challenge2 JWTCat JSON Web
Token

JWT Secret Key
Cracking

4 8

Challenge3 Burp Suite API
Endpoint
Response

Sniffing 7 7.75

Challenge4 Burp Suite API
Endpoint
Request

Credential
Stuffing

5 8

Challenge5 Burp Suite API
Endpoint
Request

API Parameter
Tampering

7.5 7

Challenge6 Burp Suite API
Endpoint
Parameter

Privilege
Escalation

5 7.75

Challenge7 Burp Suite API Server
Configuratio
n

API Parameter
Tampering

6.5 2

Challenge8 SQLMap API
Endpoint
Parameter

SQL Injection 6 8.5

Challenge9 Burp Suite API
Endpoint
Response

API Parameter
Tampering

4 4

Challenge10 Burp Suite API
Endpoint
Parameter

Command
Injection

4 9

From the results of the likelihood and impact levels obtained in table 7,

we determine the overall security risk based on the OWASP risk rating matrix
table as described in table 4. From 5 levels of severity risk rating, there are
none of the challenges has a note or low rating. All of the challenges are at
minimum have a medium severity risk rating as shown in Figure 3.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

257

Figure 3. Challenge level based on its risk rating

Next, we evaluate the performance of the proposed platform using the

load testing technique using K6 testing software. load test is performed on a
local environment on the same device of the proposed platform. To provide
real case testing, we create user-flow testing which will request 3 main API
endpoints for each scenario as shown in figure 4.

Figure 4. Scenario-based testing for performance evaluation

Furthermore, we perform a load test to analyze the performance of the

proposed container-based challenge. The first testing starts with 100
concurrent users (CU) and gradually increased to 1000 concurrent users.
With the total of 3 API endpoints as target testing as designed in figure 4, the
iteration of each testing is set at 3 times of the total CU and 1s idle time for
each API endpoint call. The result of this testing is described in table 8.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

258

Table 8. Load Testing on Container Challenge

Concurrent
Users

Average
Requests
(rps)

Data
Received
(mB/s)

Successful
Request

Failed
Request

Average
Response
time (s)

100 28.14 1.01 900 0 2.13

200 40.69 1.45 1800 0 3.41

300 48.73 1.74 2700 0 4.56

400 51.72 1.85 3600 0 5.77

500 51.05 1.82 4500 0 7.68

600 51.79 1.85 5400 0 9.3

700 50.58 1.81 6300 0 11.27

800 50.2 1.79 7196 0 13.8

900 49.7 1.75 7884 119 14.7

1000 50.58 1.76 8572 313 15.94

Based on load testing performance results as shown in Table 4, the
proposed container-based challenge is capable of serving up to 800
concurrent users with approximately 7192 successful requests and 0% of
error rate as shown in Figure 5.

Figure 5. Total requests and failed requests

However, when the performance test was set to 900 and 1000

concurrent users, multiple failed requests occurred on the system with the
highest error rate of 3.6% on 1000 concurrent user scenario. Finally, based
on load test result as shown in Figure 6, the container-based challenge is able
to handle requests up to 1000 concurrent users with average throughput of
50.58 requests per second and average response time of 15.94s.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

259

Figure 6. Average requests and response time

6. CONCLUSION

This research proposed a new platform to provide a legal and safe
environment to learn API security based on OWASP API Security Project. By
proposing microservice architecture in our proposed platform, we can
provide different kinds of security risks such as lack of resources and rate-
limiting, excessive data exposure, mass assignment, and improper assets
management which do not exist in popular security learning applications like
DVWA, WebGoat, and Mutillidae II. We also design and implement a security
learning portal with a CTF-based model and features such as challenge, risk-
based level, flag submission, and user scoring system. To provide a real case
sample for the API challenges, we adopted some real-life case incidents from
CVE and CWE reports. After the implementation step, a vulnerability
assessment is performed against the proposed application. 10 challenges are
attacked to verify the exploitability of injected vulnerability using tools such
as Burp Suite, JWTCat, and SQLMap. The exploitation result also provides
knowledge in determining a severity risk rating for risk-based level
categorization which has the result of 5 high-level challenges, 3 critical
challenges, and 2 medium challenges. Based on the performance evaluation,
the container-based can serve up to 1000 concurrent users with an average
throughput of 50.58 requests per second and 96.35% of successful requests
and 15.94s response time. However, our recommendation is to provide this
proposed platform with only 400 concurrent users which have an acceptable
response time of 5.77s and 0% error rate percentage.

For future work, the number of challenges should be increased to cover
more kinds of vulnerabilities in API-based systems. Improvement of the
proposed platform including container-based API server, database server,
and API gateway also should be optimized to achieve 100% successful

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

260

requests percentage on 900 to 1000 concurrent users and lower response
time.

Acknowledgments

We would like to thank the Politeknik Elektronika Negeri Surabaya and
Politeknik Negeri Batam for the supports on this research project.

REFERENCES
[1] 2021 State of the API Report [Internet], Postman, 2021 [cited 23

March 2022], Available from: https://www.postman.com/state-of-
api/.

[2] API Security Trends [Internet], Salt.security, 2021 [cited 23
November 2021], Available from: https://salt.security/api-security-
trends.

[3] Hussain F, Hussain R, Noye B, Sharieh S. Enterprise API Security,
and GDPR Compliance: Design and Implementation Perspective.
IT Professional, vol. 22, no. 5, pp. 81-89, 2020.

[4] UU No. 19 Tahun 2016 [Internet], Kominfo, 2022 [cited 23 March
2022], Available from: https://web.kominfo.go.id.

[5] Conte de Leon D, Goes CE, Haney MA, Krings AW. Adles: Specifying,
deploying, and sharing hands-on cyber-exercises. Computers &
Security, vol. 74, pp. 12–40, 2018.

[6] OWASP API Security - Top 10 [Internet], OWASP, 2019 [cited 23
March 2022], Available from: https://owasp.org/www-project-api-
security/.

[7] Shin S, Seto Y, Kasai Y, Ka R, Kuroki D, Toyoda S et al. Development of
Training System and Practice Contents for Cybersecurity
Education. 2019 8th International Congress on Advanced Applied
Informatics (IIAI-AAI), pp. 172-177, 2019.

[8] Su J, Cheng M, Wang X, Tseng S. A Scheme to Create Simulated Test
Items for Facilitating the Assessment in Web Security Subject,
Twelfth International Conference on Ubi-Media Computing (Ubi-Media),
pp. 306-309, 2019.

[9] Ping C, Jinshuang W, Lanjuan Y, Lin P. SQL Injection Teaching Based
on SQLi-labs. 2020 IEEE 3rd International Conference on Information
Systems and Computer Aided Education (ICISCAE), pp. 191-195, 2020.

[10] Lehrfeld M, Guest P. Building an ethical hacking site for learning
and student engagement, SoutheastCon, 2016, pp.1-6, 2016.

[11] Oh S, Stickney N, Hawthorne D, and Matthews S. Teaching Web-
Attacks on a Raspberry Pi Cyber Range, Proceedings of the 21st
Annual Conference on Information Technology Education, pp. 324-329,
2020.

[12] Mansurov A. A CTF-Based Approach in Information Security
Education: An Extracurricular Activity in Teaching Students at
Altai State University, Russia. Modern Applied Science, 2016.

Volume 10, No. 2, December 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

261

[13] Aziz N, Shamsuddin S, Hassan N. Inculcating Secure Coding for
beginners. 2016 International Conference on Informatics and
Computing (ICIC), pp. 164-168, 2016.

[14] Baş Seyyar M, Çatak F, Gül E. Detection of attack-targeted scans
from the Apache HTTP Server access logs. Applied Computing and
Informatics, vol. 14, no. 1, pp. 28-36. 2018.

[15] Kritikos K, Magoutis K, Papoutsakis M, Ioannidis S. A survey on
vulnerability assessment tools and databases for cloud-based
web applications. Array, vol. 3-4, pp. 100011, 2019.

[16] Priyanka A, Smruthi S. Web Application Vulnerabilities:
Exploitation and Prevention. 2020 Second International Conference
on Inventive Research in Computing Applications (ICIRCA), pp. 729-734,
2020.

[17] Amankwah R, Chen J, Kudjo P, Towey D. An empirical comparison of
commercial and open‐source web vulnerability scanners.
Software: Practice and Experience, vol. 50, no. 9, pp. 1842-1857, 2020.

[18] Saleem S, Sheeraz M, Hanif M, Farooq U. Web Server Attack
Detection using Machine Learning. 2020 International Conference on
Cyber Warfare and Security (ICCWS), pp. 1-7. 2020.

[19] Steiner S, de Leon D, Jillepalli A. Hardening web applications using a
least privilege DBMS access model. Proceedings of the Fifth
Cybersecurity Symposium, Article 4, pp. 1–6, 2018.

[20] Alazmi S, De Leon D. A Systematic Literature Review on the
Characteristics and Effectiveness of Web Application
Vulnerability Scanners. IEEE Access, vol. 10, pp. 33200-33219, 2022.

[21] Rangnau T, Buijtenen R, Fransen F, Turkmen F. Continuous Security
Testing: A Case Study on Integrating Dynamic Security Testing
Tools in CI/CD Pipelines. 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC), pp. 145-154, 2020.

[22] Yang J, Tan L, Peyton J, A Duer K. Towards Better Utilizing Static
Application Security Testing. 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pp. 51-60, 2019.

[23] Chen P, Zhao M, Wang J, Yu H. Exploration and practice of the
experiment teaching of web application security course. 2019
10th International Conference on Information Technology in Medicine
and Education (ITME). 2019.

[24] Ofoeda J, Boateng R, Effah J. Application Programming Interface
(API) Research. International Journal of Enterprise Information
Systems, vol. 15, no. 3, pp. 76-95, 2019.

[25] Kuzminykh I, Ghita B, Sokolov V, Bakhshi T. Information security
risk assessment. Encyclopedia, vol. 1, no. 3, pp. 602–17, 2021.

[26] OWASP Risk Rating Methodology [Internet]. OWASP, 2015 [cited
25 March 2022]. Available from: https://owasp.org/www-
community/OWASP_Risk_Rating_Methodology.

