
EMITTER International Journal of Engineering Technology
Vol. 10, No. 1, June 2022, pp. 14~30

DOI : 10.24003/emitter.v10i1.667

Copyright © 2022 EMITTER International Journal of Engineering Technology ‐ Published by EEPIS

14

An Improvement of Computer Based Test System Based on
TCExam for Usage with A Large Number of Concurrent Users

Yunarso Anang1, Rahadi Jalu Yoga Utama1, Masakazu Takahashi2,
Yoshimichi Watanabe2

1Department of Statistical Computing, Politeknik Statistika STIS, Jakarta, Indonesia

2Department of Computer Science and Engineering, University of Yamanashi,
Yamanashi, Japan

Correspondence Author : anang@stis.ac.id

Received January 18, 2022; Revised February 20, 2022; Accepted March 26, 2022

Abstract

Computer-based test or assessment has been used widely, especially
in the current COVID-19 pandemic, where many schools are
conducting distance learning as well as distance examination. The
need for a computer or software system to support education is
inevitable. A range of solutions, from the free/open source software
systems to the paid/proprietary ones have been publicly available.
Still, an organization with limited resources prefers to find free or
low-budget, while yet demanding reliable solutions. We have
reported the use of the computer-based test in a new student
recruitment test which is held country-wide. We developed the
system based on TCExam, a free and open source computer-based
test software, and successfully fulfilled the requirements, but with
some tweaks. We found that the TCExam has a performance
degradation when used by a large number of examinees
concurrently, especially during specific phases during the test. This
paper reports the result of our investigation to address the problem
and suggests some modifications to the base codes as well as a
recommendation of the hardware configuration. We evaluated the
modified system in a simulated environment. We successfully
achieved up to 56% performance gain using the modified system.

Keywords: computer-based test, TCExam, php, sql

1. INTRODUCTION
In 1845, Horace Mann, an American educational reformer, introduced

his vision for reforming American education by suggesting the Boston Public
School Committee to conduct a common written exam instead of oral exams
for their children [1]. Using a common exam, he hoped that all children could
have equal opportunities to achieve a good result in exams. Such
standardized tests became central to, not only of how our educational
system, but also in how general assessment work afterward.

These days, standardized tests conducted by utilizing computer
systems are widely used, to provide a more efficient and transparent process

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

15

of testing [2]. The system is well known as the computer-based test (CBT).
Compared to the paper-and-pencil test (PPT), there are some distinct
benefits from CBT. Those benefits include cost-savings on printing and
shipping of the paper materials and the increase of the accuracy of data
collection. Even for tests with multiple-choice answers where optical mark
recognition (OMR) can be used to automate the data collection, the chance of
error in recognizing the test answer still exists. On the other hand, in CBT, the
data are collected directly to the computer system and the process of scoring
can be simplified. The benefits of CBT can also be seen as the benefits to the
examinees where many CBTs offer immediate test scoring. However, in the
real world, CBT is not necessarily better than PPT. The need for the
appropriate development of the CBT system should not be undertaken
lightly.

Anang et al. reported a case study of the implementation of a CBT
system in a college’s new student recruitment process [3]. They described
how the system was developed introducing software engineering practices.
The system was developed based on TCExam, an open source CBT software.
TCExam is a free web-based and open source software (FOSS) which has the
capability to administer CBT [4]. In addition to the ISO/IEC 9126, a standard
for "Information Technology—Software Quality Characteristics and Sub-
Characteristics" [5], which has been replaced by ISO/IEC 25010:2011 [6],
TCExam also introduces other specific quality features. However, from Anang
et al.’s report, it has a performance degradation in specific phases during the
test when the number of concurrent examinees exceeds a specific number.
The problem has successfully been troubleshooted by splitting the server or
by differentiating the schedule of the test, but the main cause of the problem
remains untouched and needs to be addressed.

This paper reports about our investigation to address the performance
degradation problem that exists in TCExam when utilized in a large scale of
test involving a large number of concurrent users. We identified three major
phases which cause an impact on the system performance. To address those
issues, we have modified the original code which is mainly written in the PHP
programming language. We evaluated the result of the modifications by
conducting an experiment in a simulated test enviroment of a large-scale
concurrent use using parallel processing on LINUX machines as the user
client's PC. We compared several configurations and show and describe the
results using plots.

The rest of this paper is organized as follows. Section 2 describes works
related to CBT and the use and application of TCExam in the CBT system.
Section 3 describes the originality of the study. Section 4 describes the
outline of our work in investigating the performance degradation problem in
TCExam. Section 5 provides the experiment and the result as well as the
evaluation. Finally, we conclude with remarks in Section 6.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

16

2. RELATED WORKS
Studies in CBT discussed mostly the effectiveness of using the

computerized test compared to the non-computerized one. There is a
comprehensive literature study of CBT conducted by Russel et al. that reports
the result of their study on the examination of the potential benefits of
converting PPT to CBT [7], studies on the examination of the validity of CBT
and its effects on test performance and motivation [8][9][10], and a study on
the effect of user interface design on the result [11].

As the use of computers to conduct tests is becoming more prevalent in
the educational assessment domain, to establish a valid and reliable CBT, the
International Test Commission (ITC) Guidelines on Computer-Based Testing
and Internet Delivering Testing [12] (hereinafter called ITC Guidelines)
stated that equivalent test scores should be established for the conventional
PPT and its replacement, the modern CBT. The guidelines also mentioned
explicitly that when designing a CBT version of a non-computerized test,
equivalent control should be provided to the examinee such as the ability to
skip or review test items as on the non-computerized one. Considering the
result of previously reviewed studies as well as the guidelines, the developers
should give a higher priority of concern to the design of the user interface in
order to achieve the same scoring results of using the CBT compared to the
PPT.

Thurlow et al. in their synthesis report [13] stated nine considerations
for developing and implementing CBT such as incorporating inputs from
various stakeholders, considering the system as a whole from the computer
infrastructure to test room and personnel, the need to elicit the specific
accessibility features, conduct field test, and develop training for
administrative personnel and examinees. Those considerations depict all
considerations used in practicing software engineering as described in the
Guide to the Software Engineering Book of Knowledge (SWEBOK) [14],
where ISO/IEC/IEEE Systems and Software Engineering Vocabulary
(SEVOCAB) [15] defines software engineering as a “systematic application of
scientific and technological knowledge, methods, and experience to the
design, implementation, testing, and documentation of software” and an
“application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application
of engineering to software”. As SEVOCAB defines a computer-based software
system as “a software system running on a computer”, so a CBT system can
be treated as a software system, thus the use of software engineering
approach is appropriate to develop the system. Hereafter, we describe works
related to the development of the system from the software engineering
point of view.

He and Tymms described the development of a software system for CBT
[16]. After reviewing several existing commercial off-the-shelf (COTS) CBT
systems, for the reasons of limited budget and expert knowledge, they
decided to develop the system in-house. Their requirements are to develop a

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

17

system which is both easy and economic use and yet still provide the
necessary functions. While the decision making was relevant to the economic
aspect, instead of developing in-house, there is still a solution to use an OSS
as we also reviewed when we were in the process of deciding the candidate
solutions. Furthermore, the paper did not state whether the cost spent for
developing the system was less or in par with the COTS system. The rest of
the paper provides a brief description about the system specifications,
design, and implementation but we could not find the important part as of
how they evaluate the system before they use it and how was the
implementation (running in a production environment).

TCExam is an open-source software (FOSS) web-based computer-based
assessment (CBA) system that enables educators and trainers to author,
schedule, deliver, and report on surveys, quizzes, tests, and exams [4]. In
addition to the aforementioned ISO/ICE 9126 as well as its updated ISO/ICE
2501:2011 quality model and general CBA features, TCExam introduces
other specific quality features such as platform-independent, no expensive
hardware requirements, internationalization, accessibility and usability, data
export, and import, rich content, and unique test per user. After its release, it
has been used in several applications.

Shah et al. developed WriteSim TCExam, an open-source, web-based,
textual simulation environment for teaching effective writing techniques to
novice researchers [17]. Among other open-source applications, TCExam has
been chosen to serve their needs for its simple, intuitive interface and its
open-source architecture. TCExam has been used with some modifications,
such as: (1) The system would give immediate feedback to the end user upon
answering the question; (2) Blog and forums would be enabling mentoring
relationship among participants and between participants and the
administrator; and (3) Persistent bugs fix and user-interface modification for
better user-friendly. It has been used to train 25 novice researchers. Ismail et
al. developed a web-based homework system that can be embedded in
teaching and learning by school teachers [18]. TCExam has been adopted in
the system because of its cost-effectiveness, also as an alternative to the
existing pen and paper-based homework. The system received a very high
positive perception from the users even without any modification to the base
system. There was no information about how many users are using the
system concurrently. Ambiyar et al. used TCExam to study the test
performance of CBT compared to paper-based test (PBT) [19]. From the
questionnaires given to the respondents, the results showed that the CBT
received a better response compared to the PBT. The paper did not discuss
the technical issue of the TCExam.

The FOSS we have chosen is a web-based system. As we implement it as
a whole system, we need to evaluate the running system in the same or
similar condition of the production environment, where it will be used
concurrently and simultaneously by many examinees. Shaw has conducted a
case study of an online learning application to run performance testing on a

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

18

web application [20]. The author used COTS test tool: LoadRunner1, to
measure the load on the system. The author found that late use of
performance testing does not help to scale the system but did identify real
problems and gave an indication of where the main problem lay. By knowing
the location of the problem, the developer could find a solution to
countermeasure the problem. The author also stated that the use of
particular software architecture or particular hardware specification could
not guarantee adequate performance. The important thing is how to
understand what is impacting the performance and considering the
development, usage and environment approaches to find the solution. Other
studies also reported using load testing in web applications [21], [22]. The
use of automated tools helps to reduce the resources for conducting the test
and to increase the accuracy of the results when simulating the actual use of
the system. Not only COTS but FOSS test tools could also be used. In our
implementation, conducting a performance test did help us to indicate
problems in the actual use where concurrent and simultaneous examinees
use the system in the same period of test with the same start and end times.

And lastly, Hardiansyah et al., in their paper, proposed a new approach
to control the Internet connection based on idle time using user behavior
pattern analysis [23]. To see if the system can recognize patterns, they
conducted experiments in two scenarios, one is aimed to determine the
performance, and the other is aimed to determine the effectiveness if the
method. We adopt their idea in designing our own experiment.

3. ORIGINALITY

As described above, as a FOSS, the freely-useable TCExam has the
potential to be a good foundation of a computer-based test. However, based
on our previous case study, it has a performance degradation problem in a
case where there are a large number of concurrent users accessing the
system. From the documentation of TCExam1 and from its Github2, there is no
information regarding the condition or limitation of use. And, at the time this
paper was written, there is no study indicating or addressing the problem.
This paper describes our investigation and its result in addressing the
problem. Our methodology is by first understanding the design and the
architecture of the TCExam’s system. And then by building a system for
simulating the test with a large number of multiple concurrent users, we
indicate the place in the system which needs to be addressed. And finally, we
modify the system and simulate the test again to verify that the modification
takes effect on the performance.

4. SYSTEM DESIGN

In this section, first, we describe how we implement it in our CBT
system and summarize its issue. Second, we describe the architecture and the

1 https://tcexam.org/docs/
2 https://github.com/tecnickcom/tcexam

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

19

file structure of the base TCExam. And finally, we describe the outline of the
investigation process and problem-solving we have conducted. Our system is
based on TCExam version 14.0.3. The result and the evaluation will be
described in the next section.

4.1 The Implementation of CBT Based on TCExam and Its Issue

The implementation of CBT in our use case is to conduct an academic
test as part of the recruitment for the new student to our institution. In our
case, the applicants from all around Indonesia take the test on the given
schedule at the same time. In 2018 and 2019, there around 15,000 applicants
are taking the test. As reported here [3], we found that there is a performance
degradation problem when the number of concurrent users exceeds a
specific number. The number depends on the specification of the server, but
the maximum number of users for optimal use is between 100 and 200 for
each server which is placed locally in each location of test around the
country. In 2020 and 2021, due to the pandemic, we decided to conduct the
test in full online environment, where all applicants access the same CBT
server using Internet. Although the number of applicants is reduced to
around 1,600 total due to the shift of the academic test to the second stage,
the problem still needs to be addressed. In 2021, the number of concurrent
users conducting the test is around 700 in one section of test.

Figure 1. The flow of an applicant in TCExam based CBT

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

20

This algorithm shows how the TCExam processes the request from the

applicant.

In the landingPage controller (A2):

 Show all the test assigned to the applicant

 Waiting for the applicant to select a test

 If a test selected, checked for the token (tokenEntry controller)

In the tokenEntry controller (A3):

 Show the entry form for the token

 Check whether the entered token correct

 If yes, start the test (testPage controller)

 Back to the entry form

In the testPage controller (A4):

 Check the last viewed question

 If it is the first time, show the first question

 Else show the last viewed question

 Go to the questionsPage controller

In the questionsPage controller (A5):

 Loop:

 Wait for the action which can be either answer or go to

 the other question

 Check if the time is up

 If the time is up, go out the loop

 Check if the applicant terminate the test

 If the applicant end the test, go out the loop

 Go to the endPage controller

In the endPage controller (A6):

 Show an option to the applicant to show the result

 If the application select to show the result, go to resultPage

 End!

In the resultPage controller (A7):

 Show the result

 Back to the endPage controller

In the main controller (A1):

 Received the request from an applicant

 Check if the applicant have already login

 If yes, go the landing page (landingPage controller)

 Loop:

 Show the login form

 Check the login information

 If correct, go to the landingPage controller

Figure 2. The pseudo algorithm of the entire flow in TCExam based CBT

Figure 1 shows the flow of test for a particular applicant, with its

pseudo algorithm shown in Figure 2. From our previous study [3], we found
that there is a performance impact in activities A1, A3, A4, and A7, when a
large number of users do each of those activities concurrently. As for the A4,
where a unique combination of questions is generated on the fly for each
applicant, we have solved the problem by generating the set of questions for
each applicant prior to the test execution. However, it would sacrifice the
guarantee that the applicants would not be knowing the questions until the
time they started the test. And yet, the cause of the problem still needs to be
addressed.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

21

4.2 The Architecture of the TCExam
Figure 3 shows the architecture and the file structure of the TCExam.

The figure has been remade for better visualization from the original shown
in Asuni’s report [4]. TCExam adopts a common three-tier architecture. As a
web-based application, TCExam requires an application server such as the
Apache HTTP server. In behind, it uses a RDBMS (relational database
management system) such as PostgreSQL or MySQL or other well-known
RDBMSs as the database server. The application server and the database
server can be operated in one or separated hosts, whether physically or
virtually. And in front, the end-user uses the system by utilizing a web
browser. TCExam uses standard HTML, CSS, and minimal client-script for
better browser compatibility.

Figure 3. The architecture and file structure of TCExam

As for the file structure, there are several files stored in different folders

as shown in Figure 3. The system is decomposed into two main
functionalities: admin for administration and public for common users,
each has its own user privilege management. The administration and the
public areas are physically separated on the file system to improve security,
while the shared codebase remains in the shared folder including those
stored in cache, fonts, and images folders.

TCExam is written mainly in the PHP programming language. The main
codes are placeholder for administration, public, and shared, each contains
folders as shown in Figure 4. All main PHP files that are accessible by the end
user are stored in admin and public folders, specifically within code folder
in each folder. Other folders only contain constant and function definitions,
style sheets, and images, which are included or referred from the main PHP
files. Basically, there is no static HTML file. All HTML contents are rendered
from the PHP files. It does not use any specific framework such as Laravel,

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

22

Symfony, or CodeIgniter, instead, the entire codebase follows a particular
design pattern.

code

config

styles

admin

code

config

styles

public shared

code

config

Figure 4. The 2nd level of the file structure in TCExam

Codes in shared folder consist of a declaration of constant and global

variables and a definition of library functions. They are included in and called
from the main codes. Except for the declaration of constants and global
variables, there is no output rendered from these codes. Direct call to these
PHP files from the browser only returns a blank page.

Figure 5 shows the structure of a PHP file in admin and public folders.
Each ’layer’ refers to a separate PHP file which is included in the main PHP
file, except for the green layer which contains the business logic and
functions calls inside the main PHP file. The structure is quite complex and
uses the old-fashion structured programming rather than the modern object-
oriented paradigm. However, they follow a common rule so the debugging of
the execution is relatively easy to conduct.

../config/tce_auth

shared/config/tce_config

shared/config/tce_db_config

shared/code/tce_db_connect

shared/code/tce_functions_general

shared/code/tce_authorization

../code/tce_page_header

shared/code/tce_functions_test

business logic and functions calls

../code/tce_page_footer

public/code/index.php

../config/tce_auth

shared/config/tce_config

shared/config/tce_db_config

shared/code/tce_db_connect

shared/code/tce_functions_general

shared/code/tce_authorization

shared/code/tce_functions_form

shared/code/tce_functions_test

../code/tce_page_header

business logic and functions calls

../code/tce_page_footer

public/code/tce_test_execute.php

(a) (b)

../config/tce_auth

shared/config/tce_config

shared/config/tce_db_config

shared/code/tce_db_connect

shared/code/tce_functions_general

shared/code/tce_authorization

../code/tce_page_header

shared/code/tce_functions_form

shared/code/tce_functions_tcecode

shared/code/tce_functions_test

shared/code/tce_functions_test_stats

business logic and functions calls

../code/tce_page_footer

public/code/tce_show_result_user.php

../config/tce_auth

shared/config/tce_config

shared/config/tce_db_config

shared/code/tce_db_connect

shared/code/tce_functions_general

shared/code/tce_functions_authorization

shared/code/tce_functions_session

../code/tce_page_header

business logic and functions calls

../code/tce_page_footer

shared/code/tce_authorization.php

(c) (d)

Figure 5. The structure of PHP files in TCExam

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

23

4.3 Investigation Process and Problem Solving
In this section, we describe the process of our investigation to find the

problem. First, we search for the problem of codes (the PHP files) from the
public folder that handles the action A1, A3, A4, and A7 from Figure 1. We
found that the codes handling the actions are tce_authorization.php,
tce_test_execute.php, and tce_show_result_user.php as shown in
(d), (b), and (c) in Figure 5. We then inspected the content of those files and
searched for suspected codes. In this study, we focused on the actions A1, A3,
and A7. What we were looking for is the inappropriate programming logic,
unoptimized SQL query and its execution, and high-processing demand of
function. When we found a suspected code, then we modified the code and
measured the execution time. We describe the procedure of our experiment
and the analysis in the next section.

The code for the actions A1 and A3 uses the tce_authorization.php
where exists in shared/code folder. This code consists of functions for user
authorization purposes. In the original code, it uses the PHP function
password_hash to encrypt (and match) the user’s password and token used
in a test. The function uses the Bcrypt algorithm. The Bcrypt is known as
being a strong one-way hashing algorithm at the cost of high demand of CPU
processing. We suspected it causing a bottleneck when a large number try to
log in or enter the test token. We try to modify it using other lower-demand
of CPU processing algorithms such as SHA256 or SHA1 as well as try to scale
up the CPU by adding the number of cores to see the differences.

The code for the action A7 uses tce_show_result_user.php where
exists in public/code folder. After an applicant finished the test, he/she can
show the result of the test including the statistics. The code executes some
queries (SQL) from the database to gather the test data and calculate the
statistics. The original code generates a query (SQL) to be executed
dynamically by injecting values of a specific user and the current test to the
query string, then executes it to get the result. It does not use the
parameterized query. We first suspected that was the problem.

Figure 6. The non-parameterized and unoptimized original query

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

24

This algorithm shows how the program calculate the result of the test.

For the given test data:

 Calculate the max score of the right answer

 Calculate the half-max score of the right answer; used to determine

 whether the score of the question was right or not

 Generate the query to count the number of rows in the database of which

 the answer was right using its score compared to the half-max score

 Generate the query to count the number of rows in the database of which

 the answer was wrong using its score compared to the half-max score

 Generate the query to count the number of rows in the database of which

 there was no answer by compared it to NULL

 Generate the query to count the number of rows in the database of which

 the question has not been displayed

 Generate the query to count the number of rows in the database of which

 the question has not been rated

 (Not shown here) Each query is executed one after another

Figure 7. The pseudo algorithm of non-parameterized and unoptimized query

We also find that there is a number of small queries executed iteratively

which we thought also that this is the reason why the performance is
degraded especially when accessed by multiple users concurrently because
of the excessive query round-trips have happened. As shown in Figure 6,
there are five queries being executed to get the value of five values related to
the number of right and false answers and other statistics from the database.
The pseudo algorithm of the code is shown in Figure 7. We modified those
queries by combined them into one query so that the round-trip can be
avoided. The modified codes are shown in Figure 8. These codes are written
in tce_function_test_stats.php where exists in shared/code folder,
which is included in the tce_show_result_user.php. The pseudo
algorithm of the modified codes is shown in Figure 9.

Figure 8. The parameterized and optimized query

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

25

This algorithm shows how the program calculate the result of the test.

For the given test data:

 (not shown here) Precalculate the max score and the half-max score

 Compose in one string..

 Add a query field to calculate the number of test log data where the

 score is higher than the half-max score (for the correct answer)

 Add a query field to calculate the number of test log data where the

 score is lower than or equal to the half-max score (for the

 wrong answer)

 Add a query field to calculate the sum of scores for the entire test

 log where there is no change to the update time (for the unanswered

 question)

 Add a query field to calculate the sum of scores for the entire test

 log where there is display time (for the undisplayed question)

 Add a query field to calculate the sum of scores for the entire test

 log where the score is NULL (for the unrated question)

 (not showen here) The query is executed once

Figure 9. The pseudo algorithm of the parameterized and optimized query

5. EXPERIMENT AND ANALYSIS

In this section, we describe the procedure of our experiment and the
analysis of the data collected. There are two groups of parameters we used in
the experiment. The first one is from the application which includes the
programming logic and the query (SQL) including its execution codes. The
second one is the hardware configuration which includes the number of
cores and the architecture whether it is a single or separated host. For each
configuration, we measured the execution time to see the effect. We
simulated the usage of multiple concurrent users using parallelized HTTP
requests executed with Linux background command (&), xargs, and GNU
parallel. The design of the experiment is shown in Table 1, and the sample
data collected from the experiment are shown in Table 2 and 3.

Table 1. The design of the experiment

Parameter Criteria Configurations
Application Programming logic Bcrypt, SHA256, SHA1

Query (SQL) Not-parametrized vs
Parameterized vs

Parameterized and Optimized
Hardware Number of Cores 2, 4, 8, 16, 20, 24

Architecture Single vs Separated host
Users Number of

concurrent users
1000 users which are simulated

in 200 parallel processes

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

26

Table 2. The data collected from the experiment (excerpt)
original 4-core time prepared stmt 4-core time optimized query 4-core time original 12-core time prepared stmt 12-core time

[2020-05-20 23:24:56 0.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:56 0.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:56 0.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:56 0.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:56 0.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:57 1.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:57 1.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:57 1.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:53 0.00 [2020-05-20 23:53:51 0.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:54 1.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:31 0.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:54 1.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:31 0.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:56 3.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:56 3.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:56 3.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:24:59 3.00 [2020-05-20 23:43:56 3.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:25:00 4.00 [2020-05-20 23:43:56 3.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:25:01 5.00 [2020-05-20 23:43:57 4.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

[2020-05-20 23:25:02 6.00 [2020-05-20 23:43:57 4.00 [2020-05-20 23:53:52 1.00 [2020-05-20 22:45:33 2.00 [2020-05-20 22:50:32 1.00

Table 3. The data collected from the experiment (excerpt)
optimized query 12-coretime optimized query 12-core (2)time original 12-core dist time prepared stmt 12-core disttime optimized query 12-core disttime

[2020-05-20 22:54:55 0.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:49 0.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:55 0.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:49 0.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:55 0.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:49 0.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:55 0.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:50 1.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:55 0.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:50 1.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:55 0.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:50 1.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:56 1.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:50 1.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:56 1.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:46 0.00

[2020-05-20 22:54:56 1.00 [2020-05-21 21:45:39 0.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:56 1.00 [2020-05-21 21:45:39 0.00 0 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:55 0.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:56 1.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:56 1.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:57 2.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:57 2.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:58 3.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:58 3.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:58 3.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:59 4.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:51 2.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

[2020-05-20 22:54:59 4.00 [2020-05-21 21:45:40 1.00 1 [2020-05-20 22:11:52 3.00 [2020-05-20 22:19:57 2.00 [2020-05-20 22:35:47 1.00

The result of the experiment for the user authorization code is shown in

Figure 10. We can see here that the original code, which of the password
hashing function is using Bcrypt algorithm with 4-core CPU as the host has
the lowest response time in peak usage. While that is expected, it does not fit
in our usage. When we assign more cores (12-core in this experiment), we
can see an improvement by 58%. Even more improvement can be gained by
separating the host/server for application from the host/server for database.
Furthermore, when we change the algorithm to SHA256 and SHA1, we can
gain more speed. Response time of using SHA256 (or SHA1) was 55% better
than using Bcrypt with the same 4-core CPU and 30% better with a 12-core
CPU. In this experiment, the best speed was with the SHA256 algorithm and
12-core distributed architecture, which is as expected.

As for the code for displaying the result of a test, the result of the
experiment is shown in Figures 11 and 12. From Figure 11, we can see that
the original code has the worst performance when accessed by a large
number of users concurrently. The prepared (or parameterized) query
slightly gives better performance but is not so significant compared to the
original one which is not prepared. The optimized (which also uses the
prepared query) gives a better response time, which is around 50% better
compared to the original code, with the same number of 4-core CPU. There
was a slightly better response time when using more CPU core as shown in
Figure 12. The best performance in this experiment was with optimized

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

27

query and 12-core and separated hosts (for application and database) which
give around 56% of better response time.

0

5

10

15

20

0 25 50 75 100

time (sec)

re
sp

o
n

se
 t
im

e
 (

se
c)

condition

w/ pwd bcrypt hash 4−core

w/ pwd bcrypt hash short 4−core

w/ pwd sha1 hash 4−core

w/ pwd sha256 hash 4−core

w/o password 4−core

w/ pwd bcrypt hash 12−core

w/ pwd bcrypt hash 12−core dist

w/ pwd sha256 12−core

w/ pwd sha256 12−core dist

1000 concurrent users in 200 parallel process

Response Time at Start

Figure 10. Result of the experiment for the user authorization code

0

10

20

30

40

0 50 100 150 200

time (sec)

re
sp

o
n

se
 t
im

e
 (

se
c)

source code

original

prepared stmt

optimized query

1000 concurrent users in 200 parallel process

Response Time at Display Result

Figure 11. Result of the experiment for the test result display code (1)

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

28

0

10

20

30

40

0 50 100 150 200

time (sec)

re
sp

o
n

se
 t
im

e
 (

se
c)

source code

original 4−core

prepared stmt 4−core

optimized query 4−core

original 12−core

prepared stmt 12−core

optimized query 12−core

original 12−core dist

prepared stmt 12−core dist

optimized query 12−core dist

1000 concurrent users in 200 parallel process

Response Time at Display Result

Figure 12. Result of the experiment for the test result display code (2)

6. CONCLUSION

As a free and open-source software (FOSS), TCExam is one solution that
can be chosen to implement a computer-based test (CBT). However, from our
previous use case, we found a performance degradation problem when used
in a large number of applicants concurrently.

This paper reports the result of our investigation in searching the
problem and provides the solution by modifying part of the codes. We
evaluated the impact of the solution by conducting an experiment in a
simulated environment. Including the recommendation to scale up the
processor and separate the hosts for the application server, the best
improvement can be gained regarding the performance was up to 56%.

The future work includes more investigation on another important part
of the codes of TCExam where the test instrument (set of questions) is
generated on the fly, which also has a performance degradation in a
concurrent large number of users.

REFERENCES
[1] Carole J. Gallagher, Reconciling a Tradition of Testing with a New

Learning Paradigm, Educational Psychology Review, Vol. 15, No. 1, pp.
83-99, 2003.

[2] Cynthia G. Parshall, Judith A. Spray, John C. Kalohn, and Tim Davey,
Practical Considerations in Computer-Based Testing, Practical
Considerations in Computer-Based Testing, 2002.

[3] Y. Anang, Takdir, F. Ridho, I. Santoso, L. R. Maghfiroh, S. Mariyah, M.
Takahashi, and Y. Watanabe, Implementation of Computer-Based
Test in a Countrywide New Student Recruitment Process,

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

29

Proceedings of the 4th International Conference on Information
Technology (InCIT), Bangkok, pp. 268-273, 2019.

[4] Nicola Asuni, Quality Features of TCExam, an Open-Source
Computer-Based Assessment Software, JRC Scientific and Technical
Reports EUR 23306 EN, Institute for the Protection and Security of the
Citizen, Joint Research Centre, European Commission, Ispra (VA), Italy,
2008.

[5] ISO/IEC, ISO/IEC 9126: Software Engineering – Product Quality.
ISO/IEC, 2001.

[6] ISO/IEC, ISO/IEC 25010:2011: Systems and Software Engineering –
Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and Software Quality Models. ISO/IEC, 2011.

[7] Michael Russell, Amie Goldberg, and Kathleen O’connor, Computer-
based Testing and Validity: a look back into the future, Assessment
in Education: Principles, Policy & Practice, Vol. 10 No. 3, pp. 279–293,
2003.

[8] Chua Yan Piaw, Replacing Paper-based Testing with Computer-
based Testing in Assessment: Are We Doing Wrong?, Procedia -
Social and Behavioral Sciences, Proceedings of the 12 th International
Educational Technology Conference - IETC, pp. 655–664, 2012.

[9] Maria M. Llabre, Nancy E. Clements, Katharine B. Fitzhugh, Gary
Lancelotta, Roy D. Mazzagatti, and Nancy Quinones, The Effect of
Computer-Administered Testing on Test Anxiety and Performance,
Journal of Educational Computing Research, Vol. 3 No. 4, pp. 429–433,
1987.

[10] Jr. Thomas J. Ward, Simon R. Hooper, and Kathleen M. Hannafin, The
Effect of Computerized Tests on the Performance and Attitudes of
College Students, Journal of Educational Computing Research, Vol. 5 No.
3, pp. 327–333, 1989.

[11] Joseph Hardcastle, Cari F. Herrmann-Abell, DeBoer, and E. George,
Comparing Student Performance on Paper-and-Pencil and
Computer-Based-Tests, In Annual Meeting of the American Educational
Research Association, April 2017.

[12] Dave Bartram, The International Test Commission Guidelines on
Computer-Based and Internet-Delivered Testing, Industrial and
Organizational Psychology, Vol, 2 No. 1, pp. 11–13, 2009.

[13] Martha Thurlow, Sheryl S. Lazarus, Debra Albus, and Jennifer Hodgson,
Computer-based Testing: Practices and Considerations. Synthesis
report, National Center on Educational Outcomes, 2010.

[14] Pierre Bourque, EÉcole de Technologie Supeérieure (EÉTS), Richard E.
(Dick) Fairley, and Software and Systems Engineering Associates
(S2EA), Guide to the Software Engineering Body of Knowledge

(SWEBOK®): Version 3.0, IEEE Computer Society Press, 2014.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

30

[15] IEEE Computer Society, Software and Systems Engineering Vocabulary

(SEVOCAB), http://www.computer.org/sevocab/, 2021. Accessed: Feb 12,

2021.

[16] Qingping He and Peter Tymms, A computer-assisted test design and
diagnosis system for use by classroom teachers, Journal of Computer
Assisted Learning, Vol. 21 No. 6, pp. 419–429, 2005.

[17] Jatin Shah, Dimple Rajgor, Meenakshi Vaghasia, Amruta Phadtare,

Shreyasee Pradhan, Elias Carvalho, and Ricardo Pietrobon, WriteSim

TCExam - An open source text simulation environment for training

novice researchers in scientific writing, BMC Medical Education 2010,

10:39, pp. 1-14, 2010.

[18] M. Ismail, W. Z. A. Mokhtar, N. N. M. Nasir, N. R. L. Rashid, and A. K.
Ariffin. The development of a web-based homework system (wbh)
via tcexam, Mediterranean Journal of Social Sciences, Vol. 5 No. 15,
2014.

[19] Ambiyar, Muhammad Luthfi Hamzah, Astri Ayu Purwati, and Eki
Saputra, Computer Based Test Using Tcexam as An Instrument
Learning Evaluation, International Journal of Scientific & Technology
Research, Vol. 8, pp. 1066–1069, 2019.

[20] James Shaw, Web Application Performance Testing—a Case Study
of an On-line Learning Application, BT Technology Journal, Vol. 18 No.
2, pp. 79–86, 2000.

[21] Eljona Proko and Ilia Ninka, Analyzing and Testing Web Application
Performance, International Journal of Engineering and Science, Vol. 3
No. 10, pp. 47–50, 2013.

[22] Rijwan Khan and Mohd Amjad, Performance testing (load) of web
applications based on test case management, Perspectives in Science,
Vol. 8, pp. 355–357, 2016.

[23] F. F. Hardiansyah, J. L. Buliali, and W. Wibisono, Internet Connection

Control based on Idle Time Using User Behavior Pattern Analysis,

EMITTER International Journal of Engineering Technology., Vol. 2, No. 2,

pp. 49-61, 2014.

