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Abstract 
 

Telemonitoring of human physiological data helps detect emergency 
occurrences for subsequent medical diagnosis in daily living 
environments. One of the fatal emergencies in falling incidents. The 
goal of this paper is to detect significant incidents such as falls. The 
fall detection system is essential for human body movement 
investigation for medical practitioners, researchers, and healthcare 
businesses. Accelerometers have been presented as a practical, low-
cost, and dependable approach for detecting and predicting 
outpatient movements in the user. The accurate detection of body 
movements based on accelerometer data enables the creation of 
more dependable systems for incorporating long-term development 
in physiological remarks. This research describes an accelerometer-
based platform for detecting users' body movement when they fall. 
The ADXL345, MMA8451q, and ITG3200 body sensors capture 
activity data, subsequently classified into 15 fall incident classes 
based on SisFall dataset. Falling incidents classification is performed 
using Long Short-Term Memory results in best AUC-ROC value of 
97.7% and best calculation time of 6.16 seconds. Meanwhile, Support 
Vector Machines results in the best AUC-ROC value of 98.5% and best 
calculation times of 17.05 seconds.  

  
Keywords: Fall Detection System, Sensors-based Monitoring, 
Accelerometer, Gyroscope, LSTM, SVM. 
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1. INTRODUCTION 
Falls are a serious problem in Indonesia. According to IFLS (Indonesian 

Family Live Survey) survey data, the falling incidents in the elderly increase 
every year, namely by 30% in the elderly over 65 years and 50% in the age 
above 80 years [1]. The elderly with degenerative diseases risk experiencing 
a higher falling incidents rate, two times the number compared to the elderly 
who do not have the disease [2]. Several most significant risk factors are 
namely: muscle weakness and balance disorders, illegal drug consumption, 
unsafe home environment, visual and hearing impairment, and chronic 
diseases such as hypertension, stroke, and heart disease [3]. 

The falling incidents do not only occur in the elderly but can also occur 
in children and adults. The falling incidents impact the decline in the balance 
function of falls and can have fatal and non-fatal consequences. Examples of 
dire consequences caused by falling incidents are permanently paralyzed 
(disability), psychological effects such as trauma, and fear. In comparison, 
examples of non-fatal fall incidents are bruising, swelling, and fractures [4]. 

The purpose of this study is to classify the types of falls on a sensor-
based fall incident detection system using a Deep Learning-based algorithm, 
namely Long Short-Term Memory (LSTM) and tree-based, namely the 
Support Vector Machine (SVM). The number of types of fall incidents to be 
classified is 15 classes. The data used in the fall incident detection system is 
taken from three sensors consisting of two accelerometers sensors, namely 
the ADXL345 sensor and the MMA8451q sensor, and one gyroscope sensor, 
the ITG3200 sensor [5]. The LSTM and SVM classification results were 
evaluated using the True Positive Rate, False Positive Rate, Precision, F-
Measure, and Area Under Operating-Receiver Operating Characteristic 
methods. 

The structure of this paper is divided into several parts. Section 1 
introduces fall incidents and the importance of building a machine that can 
automatically recognize fall incidents. Section 2 describes the previous 
research related to fall incident detection systems using LSTM and SVM and 
evaluates the classification performance between the two. Furthermore, in 
Section 3, the sequence of fall incident recognition experiments using Deep 
Learning (DL) is described. Finally, Section 4 presents the result in 
performance evaluation from LSTM and SVM and concludes the results of this 
fall incident detection system. 
 
2. RELATED WORKS 

Many types of research on fall incident detection systems have been 
carried out using various methods, tools, and case studies [6]. Specific for this 
experiment, we used a dataset that collects data in users' daily lives by 
monitoring movement and falling incidents, using two accelerometer 
sensors: ADXL345 sensor and the MMA8451q sensor, and one gyroscope 
sensor: the ITG3200 sensor. The falling incidents are categorized into 15 
classes from these data, and then classification is carried out using LSTM and 
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SVM. Based on the classification results, LSTM and SVM then underwent a 
performance evaluation using True Positive Rate, False Positive Rate, 
Precision, F-Measure, Area Under Operating-Receiver Operating 
Characteristics. 

 
2.1 Fall Monitoring using Sensors 

A fall is regarded as atypical activity, necessitating continuous 
monitoring of the user's daily life routines. Visual tracking of the user's 
position is a standard method for obtaining information about their 
movement in their activity. Overhead camera tracking sends details about 
user movement trajectories and user activities in designated monitored 
regions [7], [8].  

With an 81 percent success rate for fall detection, Omni-camera images 
are employed to construct the horizontal arrangement of the user's shadows 
or silhouettes in the case of falling [9]. With a fall detection success rate of 
66.6 percent [10], head tracking is used to follow the user's movement 
trajectory. The earlier stated solutions for detecting falls in the user based on 
visual information necessitate collecting equipment and are thus limited to 
indoor contexts. These circumstances need planned experiments to limit the 
probability of an accident or fatal harm while performing scripted or 
unscripted falls. 

The usage of sensors that include accelerometers, gyroscopes, and 
touch sensors is an innovative technique to collect user activity data. There 
exist research on the use of accelerometers, gyroscopes, and tilt sensors in 
fall detection [11]. Data acquired from accelerometers are utilized to validate 
user movement trajectory and time occupancy in defined sections of the 
experiment and identify abrupt movement related to a fall. This data is often 
rotation angle or acceleration in the X, Y, and Z axis, using gyroscope sensors. 
The automatic fall detection is accomplished by the use of established 
thresholds [12] and the association of current position, movement, and 
acceleration [11], [13]. This research employed the latter data collection, 
using two accelerometer sensors, namely the ADXL345 sensor and the 
MMA8451q sensor, and one gyroscope sensor, namely the ITG3200 sensor. It 
proves the effective use of accelerometers, resulting in better-than-before 
classification accuracy if handled with the right Deep Learning models. 

 
2.2 Fall Detection using Deep Learning 

Chen et al. created a CNN model with three convolution layers followed 
by three pooling layers. The convolution kernel of their CNN is customized to 
the features of the accelerometer data. A total of 31,688 samples were 
gathered from user behaviors in various experiment regions. Their data is 
gathered using an Android-based smartphone with an accelerometer sensor. 
In their study, SVM and Deep Belief Network (DBN) approaches were 
compared against CNN, with CNN receiving the highest evaluation score of 
93.8 percent [14]. Santos et al. explored extensively with CNN models. Their 
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studies used the Notch dataset and the Smartwatch dataset from prior work, 
and they constructed a fall detection system with a single convolutional layer. 
Their best sensitivity score was 91.7 percent [15]. 

Aicha et al. propose three DL models for fall detection systems: a CNN, 
an LSTM, and a hybrid of these two models (Convolutional-LSTM or 
ConvLSTM). An accelerometer sensor was used to collect data on 296 older 
people ranging in age from 65 to 99 years old. The AUC performance 
evaluation was used as a performance comparison tool between the Deep 
Learning models. While both the LSTM and ConvLSTM models outperformed 
the CNN, the ConvLSTM model has a much shorter learning runtime [16].  

Mauldin et al. demonstrated SmartFall, an Android application that 
serves as an accelerometer and gyroscope sensor for data collecting. Using 
the Notch dataset, SVM, Naïve Bayes, and Gated Recurrent Unit are used, with 
the top result reaching 73 percent of TPR [17]. Later on, Zurbuchen et al. 
used the SVM for their fall detection system, using the public dataset of 
SisFall [5]. They use wearable sensors to detect users falling to the ground. 
The SisFall dataset consisted of 15 classes; therefore, the fall detection 
system is considered a multiclass classification. Although SVM is built for 
binary classification, ultimately, their SVM reached the TPR score of 87.9 
percent and 96.4 in the AUC-ROC score [18]. 

We chose the single-layer LSTM architecture due to its ability to 
shorten learning runtime while achieving excellent classification accuracy. As 
the previous work stated, CNNs and DBNs are outperformed by LSTM. We 
also made our tuned SVM possible to solve multiclass problems of 
classification. We also employed the public dataset of activity data consisting 
of accelerometer and gyroscope data from users falling by design [5]. The 
LSTM and SVM in this experiment were built from the Java-based machine 
learning tool. In addition, we added the computation time for both the 
training stage and testing stage from LSTM and SVM as the performance 
evaluation. 
 
2.3 Performance Evaluation Efforts 

This experiment employed performance evaluation of LSTM and SVM, 
using the True Positive Rate (TPR), False Positive Rate (FPR), Precision, F-
Measure, Area Under Operating-Receiver Operating Characteristic (AUC-
ROC) methods, as well as their computation time. We do not employ the 
accuracy evaluation because the data is already in a balanced class. 

TPR is the ratio of the data predicted to be correct with the total actual 
data, rather than data predicted to be correct [19]. In technical language, the 
TPR is based on how likely the LSTM and SVM correctly accept the 
hypothesis, which are the fall categories for the detection system. The TPR is 
also called Sensitivity or Recall [19]. In contrast, the FPR is based on the 
probability of rejecting the null hypothesis incorrectly. In statistics, FPR is 
also called Type I error [19]. Equation 1 and Equation 2 shows basic TPR 
calculation and basic FPR calculation, respectively. 
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     (1) 

 

     (2) 

 

Precision is the ratio of the data predicted correctly to the total number 
of data predicted to be correct [20]. The precision value for each class of 
falling incidents can be calculated using Equation 3.  

     (3) 

 

The AUC curve is used to measure the performance of the 
classification algorithm. The higher the AUC value, the better the algorithm's 
classification ability. A good AUC value has a value close to one. Nevertheless, 
the classification algorithm performance assessment based on the ROC curve 
states that a number above 0.5 means that the algorithm has an excellent 
ability to recognize data in each class [21].  

 

     (4) 

 

Furthermore, the F-Measure acts as an evaluation to measure the 
harmonic mean of Precision and Recall [20], as stated in Equation 4. We 
added the F-Measure methods since the Precision and Recall show an 
imbalanced weight.  

 

3. ORIGINALITY 
We employed LSTM and SVM classification algorithms in this work on 

data involving falling incidents. Therefore, this work is considered the 
building of a Fall Detection System (FDS). The SisFall dataset used three 
sensors to capture humans' motion when falling. As there are many other 
experiments on FDS, each of them depends on the case and the concern. We 
specifically build the best Deep Learning models of LSTM and SVM in terms of 
the accuracy of many performance measures and learning runtime. 

Moreover, the SisFall dataset classifies the "fall" into 15 classes, which 
will hinder the performance of SVM, as it naturally works only for binary 
classification. However, previous work by Assodiky et al. [22] suggests the 
adjustment of hyperparameters in respective training models. In this 
experiment, we manually adjusted the influential hyperparameter settings 
for LSTM and SVM to fit the case of FDS, which is rarely done. 
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Machine Learning (ML) improvements aim to reduce computation time 
and resources. Due to their high performance and outstanding semiotic 
pattern identification, SVMs have become the most common classification 
algorithms [23]. In short, our experiment can define contribution as to how 
excellent Deep Learning models can only measure an excellent dataset. 
However, the Deep Learning models required hand-picked hyperparameter 
settings, as the cases vary from one another. SVM is not the best pick for 
multiclass classification, but we made it a reasonable Deep Learning model 
for this case by manually adjusting the default hyperparameter of SVM. 

Furthermore, a single layer neural network such as LSTM also sought to 
be in low performance for multiclass classification, in terms of accuracy and 
runtimes. But we proved it different by improving the hyperparameter 
setting to fit the SisFall dataset. Overall, we demonstrate the gap for 
improvement in Deep Learning models in falling incidents cases, especially in 
testing datasets. We lowered the runtimes for single-layer LSTM and made 
SVM available for multiclass classification in specific FDS cases. 

 
4. SYSTEM DESIGN 

Figure 1 illustrates the experiment setup: firstly, we imported the 
SisFall dataset into our LSTM and SVM. Then, we processed the data in terms 
of fall detection. We surely performed several evaluations to ensure the 
credibility of our LSTM and SVM model output. Lastly, we compared our 
accuracy results with other FDS works. 

 

 
 

Figure 1. Experiment Setup of Fall Detection System using LSTM and SVM  
 

4.1 Data Collection 
This study used a SisFall public dataset about a sensor-based fall 

incident detection system [5]. Figure 2 illustrates the compilation of SisFall 
dataset, with two accelerometers' sensors (ADXL345 and MMA8451q) and 
one gyroscope sensor (ITG3200) [5]. Meanwhile, the details of the dataset are 
described in Table 1. 
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Figure 2. SisFall Dataset which contains of 15 fall types. 

 
Table 1 shows detailed information on the SisFall dataset, consisting of 

10 attributes taken from two accelerometer sensors: ADXL345 sensor and 
MMA8451q sensor with X, Y, and Z axis acceleration, as well as the ITG3200 
gyroscope sensor with X, Y, and Z axis rotation data. We have since used the 
SisFall dataset because it is available to the public, and it is one of the latest 
falling incident datasets [24]. SisFall is thought to be a ready-for-use dataset, 
founded in 2017, and its use of accelerometer and gyroscope sensors prove 
to have an outstanding result for FDS research [25]. There are 15 types of fall 
incidents classified in SisFall, with 3,000 records for each class/type. The 
detailed information on the types of falls can be seen in Table 2. 

 
Table 1. Dataset Information 

Information Detail 

Dataset SisFall Dataset [5] 

File Type Comma Separated Values (CSV) 

Subjects 
23 subjects, 
ranging from 19 to 30 years old 

Amount of Data 45.000 instances 

Fall Incident Class(es) 15 classes 

Attribute(s) 10 attributes 

Data Distribution towards Class(es) Balanced 

 
Table 2. Fall Types According To SisFall Dataset [5] 

Code Fall Types Activity Main Cause 
F01 Forward Walking Slipped 
F02 Backward Walking Slipped 
F03 Lateral Walking Slipped 
F04 Forward Walking Tripped 
F05 Forward Jogging Tripped 
F06 Vertical Walking Fainted 
F07 Fall-breaking Walking Fainted 
F08 Forward Trying to get up - 
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Code Fall Types Activity Main Cause 
F09 Lateral Trying to get up - 
F10 Forward Trying to sit Activity 
F11 Backward Trying to sit Activity 
F12 Lateral Trying to sit Activity 
F13 Forward Sitting down Fainted/Fell Asleep 
F14 Backward Sitting down Fainted/Fell Asleep 
F15 Lateral Sitting down Fainted/Fell Asleep 

 
4.2 Data Pre-Processing 

To fully maximize the use of the Deep Learning models, the data firstly 
need to be “cleaned”. We used a community-recommended data pre-
processing: the Replace Missing Value package [22]. Missing data treatment 
is critical for avoiding skewed outcomes [26]. In general, missing data in the 
SisFall dataset lowers the power of the LSTM and SVM models, resulting in 
incorrect fall detection. Even missing value columns and rows frequently play 
a significant influence in the LSTM and SVM output. We certainly don't want 
to miss any records in the columns and rows essential to the LSTM and SVM 
learning processes. Leaving these factors out could result in redundancy in 
our results. Consequently, missing value treatment is critical for developing 
the best-fit LSTM and SVM models. It is a part in the direction of adjusting 
data and learning models, which is the focus of this experiment: to build a 
learning model for FDS purposes.  

Both LSTM and SVM data are prepared by first normalizing data using 
respective built-in functions. For LSTM, the data normalization function is 
located before data input in the layer of LSTM itself. In contrast, for SVM, the 
data normalization function is located before data input and in the kernel. 
This kernel is named as Normalized Polynomial Kernel [27]. Furthermore, 
the data is split into two, with the training stage getting 80% of the total data, 
and the testing stage getting 20% of the total data.  
 
4.3 Fall Detection using LSTM and SVM 

For a successful detection procedure, finding and using the appropriate 
training settings is a critical first step. As a result, numerous hyperparameter 
adjustments should be made. These hyperparameter settings are activation 
functions, learning rate, early stopping condition, size of the batch, dense 
constant, and loss function for LSTM. For SVM, these hyperparameter 
adjustment is made for attribute normalization type, batch size, calibrator 
and complexity, gradient descent, epsilon constant and kernel type, iteration, 
ridge constant, and tolerance parameter. Table 3 shows the one-layer LSTM 
architecture built for our fall detection experiment, while Table 4 shows the 
LSTM hyperparameter setting used in this experiment. Moreover, Table 5 
shows the hyperparameter setting for the SVM setup. 
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Table 3. LSTM Architecture Model 

Layer Input/Output 
Total 
Parameters 

Parameters 
Shape 

LSTM 9/15 1.500 
W: {9, 60} 
RW: {15, 60} 
B: {1, 60} 

Dense 15/15 240 
W: {15, 15} 
B: {1, 15} 

Output 15/15 240 
W: {15, 15} 
B: {1, 15} 

Total Parameters 1.980 
Trainable Parameters 1.980 
Non-Trainable 
Parameters 

0 

 
Table 4 and Table 5 outline each hyperparameter's details and its 

associated function. For the efficiency of the training phase, the respective 
model’s hyperparameters must be adjusted. Furthermore, a backpropagation 
update is used to train the LSTM model. The goal of this update is to reduce 
the loss function to zero in each iteration.  

After that, we'll look at the optimal learning rate for building the LSTM 
model. Specifically, this is performed by varying the step size used to update 
the model's weights with respect to the loss function. Choosing the most 
appropriate learning rate can be difficult, and this is a problem for many 
researchers. An inefficient convergence rate may result in a progressive 
decline of the loss function, or an inefficient convergence rate may inhibit 
convergence. It could cause a variety of loss functions. These 
hyperparameters are considered the critical parameters that must be 
adjusted throughout the LSTM's training process. On the other hand, our 
adjusted SVM is not prone to overfitting and adequately handles high 
dimensional data. SVM also benefits from being memory-efficient, making it 
ideal for accelerometer and gyroscope sensors. 

 
Table 4. LSTM Hyperparameter Setup 

Hyperparameter Value/Function 
Activation Function ReLU 
Attribute Normalization Type Normalize training data 
Batch Size 100 
Dense Activation Function Softmax 
Early Stopping False 
Enable Intermediate Evaluation True 
Epoch  50 
Epoch Listener True (5) 
Gate Activation Function Sigmoid 
Loss Function MCXENT 
Output Activation Function Softmax 
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Table 5. SVM Hyperparameter Setup 
Hyperparameter Value/Function 
Attribute Normalization Type Normalize training data 
Batch  100 
Calibrator  Logistic Regression 
Complexity Parameter 1.0 
Conjugate Gradient Descent True 
Epsilon 1.0E-12 
Kernel  Normalized Polynomial 
Maximum Iteration (Calibrator) -1 
Ridge (Calibrator) 1.0E-8 
Tolerance Parameter 0.001 

 
5. EXPERIMENT AND ANALYSIS 

This section presents our experiment results and its explanation in the 
form of discussion. 

 
5.1 Fall Detection using LSTM and SVM 

Table 6 shows the various validation based on fall detection 
performance using LSTM, while Table 7 shows the validation based on SVM 
performance. Table 6 and Table 7 have remarks for TPR, FPR, Precision, F-
Measure, and AUC-ROC changed to Evaluation 1st to Evaluation 5th. 
Meanwhile, Figure 3 illustrates the chart of the training stage and testing 
stage computation time of both LSTM and SVM.  

 
Table 6. Validation Based on LSTM Performance 

Class 
Evaluation 

1st 2nd 3rd 4th 5th 

F01 0.810 0.015 0.795 0.802 0.955 

F02 0.161 0.040 0.226 0.188 0.823 

F03 0.467 0.013 0.717 0.565 0.922 

F04 0.713 0.048 0.498 0.586 0.924 

F05 0.695 0.029 0.638 0.665 0.919 

F06 0.474 0.055 0.382 0.423 0.907 

F07 0.618 0.019 0.706 0.659 0.926 

F08 0.833 0.007 0.886 0.859 0.960 

F09 0.799 0.005 0.924 0.857 0.953 

F10 0.925 0.030 0.695 0.794 0.977 

F11 0.640 0.031 0.586 0.612 0.954 

F12 0.572 0.009 0.830 0.678 0.920 

F13 0.835 0.016 0.783 0.808 0.971 

F14 0.744 0.023 0.710 0.727 0.968 

F15 0.859 0.008 0.889 0.874 0.967 
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Table 7. Validation Based on SVM Performance 

Class 
Evaluation 

1st 2nd 3rd 4th 5th 
F01 0.523 0.016 0.696 0.597 0.849 
F02 0.365 0.022 0.547 0.438 0.853 
F03 0.462 0.008 0.805 0.587 0.853 
F04 0.144 0.033 0.226 0.176 0.835 
F05 0.643 0.054 0.463 0.538 0.878 
F06 0.509 0.012 0.748 0.606 0.884 
F07 0.238 0.085 0.168 0.197 0.844 
F08 0.007 0.041 0.011 0.009 0.861 
F09 0.855 0.110 0.367 0.514 0.920 
F10 0.429 0.066 0.322 0.368 0.861 
F11 0.572 0.028 0.591 0.581 0.893 
F12 0.036 0.018 0.125 0.056 0.929 
F13 0.569 0.026 0.602 0.585 0.919 
F14 0.932 0.030 0.695 0.796 0.985 
F15 0.592 0.027 0.619 0.605 0.958 

 

 

Figure 3. Computation Time Comparison of LSTM and SVM (in seconds) 

 
Over the years, researchers have taken a variety of learning models for 

fall detection systems. These previous works resulted in a certain level of 
accuracy. Then, we compared our LSTM and SVM results with these previous 
works. Our LSTM and SVM prove to have excellent accuracy of 98.5% for 
LSTM and 97.7% for SVM. The comparison of our work and other FDS works 
is shown in Table 8. 
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Table 8. Comparison of Our Proposed Model and other FDS works 

Previous Work Year Learning Model Accuracy 

Chen et al. [14] 2015 SVM-DBN 93.8% 

Pierloni et al. [28] 2015 SVM 95.18% 

Mauldin et al. [17] 2018 SVM 73% 

Wisesa et al. [29] 2019 LSTM 86.63% 

Santos et al. [15] 2019 SVM-CNN 91.7% 

Zurbuchen et al. [18] 2020 SVM 96.4% 

Our Proposed 
Models 

2021 
SVM 98.5% 

LSTM 97.7% 

 
5.2 Discussion 

Based on the result of LSTM and SVM performance validation, it is clear 
that SVM can process the SisFall dataset into a TPR score of 0.932 or 93.2% in 
percentage. With only 0.013 or 0.13% difference, LSTM could catch up SVM’s 
TPR score by 0.925 or 92.5% in percentage. However, LSTM has the best FPR 
score with 0.005, while SVM is 0.008. Furthermore, both DL models showed 
no struggle in this fall detection system, as the LSTM score of AUC-ROC is 
0.977 or 97.7%, while the SVM score of AUC-ROC is 0.985 or 98.5%. This 
finding means that both LSTM and SVM are able to tell the difference 
between each of the fall classes. AUC-ROC rules suggest that any result above 
50% means that the model has an outstanding capability to learn between 
classes [21]. When confronted with extended sequences, LSTMs tend to 
prioritize neighboring information. It is quite susceptible to gradient 
dispersion. As a result, if the data sequence is lengthy, the data usage rate will 
be inadequate.  

Another performance evaluation, such as computation time, is also 
done for both LSTM and SVM. According to our experiment, SVM achieved 
513.36 seconds (roughly 8.5 minutes) for the training stage and 17.05 
seconds for the testing stage. LSTM has a slower training time by 6,760.73 
seconds or roughly 1.87 hours, but blazing fast testing time by only 6.16 
seconds. In Figure 3, LSTM shows a slower training time than SVM. This is 
natural for LSTM. Slower computation time does not always mean that the 
model will perform better and be more accurate [30]. The same goes for 
faster computation time. However, we found that a slower training time is 
aligned with a faster testing time. The more time it takes for a model in the 
training stage, the faster it will become in the testing stage.  
 
6. CONCLUSION 

This work presents the fall detection system using LSTM and SVM as 
the Deep Learning models. LSTM is picked as previous work stated that LSTM 
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outperforms most vanilla Deep Learning models, including CNN. Meanwhile, 
SVM was chosen to face a classification problem that is not natural for SVM, 
namely the multiclass problem in standard classification. As for the dataset, 
we used the SisFall dataset, which comprises 3,000 rows of fall information 
based on three sensors, two of which are accelerometer sensors (ADXL345 
and MMA8451q) and one gyroscope sensor (ITG3200). All sensors yield 
information on the user's X, Y, and Z axis positions. Moreover, this dataset 
also represents a multiclass dataset; it has 15 classes of falling incidents with 
different fall types, activities, and main causes. 

SVM (in its general purpose) cannot be implemented in multiclass 
classification. Single-layer LSTM, on the other hand, also cannot be beneficial 
in handling more than 15 classes of sensor-based data of fall detection. 
However, in this paper, we were able to achieve the best result with a bit of 
experiment of modifying hyperparameter value. Based on our experiment, 
LSTM can yield a sensitivity score of 92.5%, while SVM can yield a higher 
value of 93.2%. Using FPR, our LSTM has reached 0.005, and SVM has 
reached 0.008. Both DL models also have relatively fast runtimes in the 
testing stage, with LSTM peaked in 6.16 seconds and SVM peaked in 17.05 
seconds. These statistical accuracies are presented to evaluate how the LSTM 
and SVM are able to handle the multiclass SisFall dataset. These results also 
show the ability of SVM to handle multiclass classification for a fall detection 
system under our custom-picked hyperparameter setting. However, for SVM 
to perform much better in multiclass problems, one needs to revamp the 
entire mathematical aspect of SVM, which is essentially the same as not using 
SVM and creating a new kind of tree-based Deep Learning model. The result 
also indicates that the single-layer neural network of LSTM can handle such a 
large multiclass dataset under fair learning runtime. 

We believe in a better result by tinkering further to the respective DL 
model’s hyperparameter settings, including carefully selecting the kernels. 
Changing the mathematical aspect of SVM may make it even more robust in 
handling much more classes and data samples. Adding other layers into 
LSTM architecture and combining them with different layers is also 
recommended for future work purposes. 
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