
EMITTER International Journal of Engineering Technology
Vol. 10, No. 1, June 2022, pp. 63~82

DOI : 10.24003/emitter.v10i1.628

Copyright © 2022 EMITTER International Journal of Engineering Technology ‐ Published by EEPIS

63

Automating Test Case Generation for Android Applications
using Model-based Testing

Usman Habib Khan1, Muhammad Naeem Ahmed Khan2, Aamir

Mehmood Mirza3, Muhammad Akram4, Shariqa Fakhar5, Shumaila
Hussain6, Irfan Ahmed Magsi7, Raja Asif Wagan8

1,2 Independent Research Scholar, Islamabad, Pakistan,

3,4,7,8 Balochistan University of Information Technology, Engineering and
Management Sciences, Quetta, Pakistan

5,6 Sardar Bahadur Khan Women’s University, Quetta, Pakistan
E-mail: mnak2010@gmail.com2, mamehmood@msn.com3,
akram.khan@buitms.edu.pk4, shariqa.fakhar@yahoo.com5,

shumaila.hussain@sbkwu.edu.pk6, irfan.ahmed@buitms.edu.pk7,
rajuwagan@gmail.com8*

 Correspondence Author: usmanhabibkhan@gmail.com1

Received January 6, 2022; Revised February 10, 2022; Accepted March 14, 2022

Abstract

Testing of mobile applications (apps) has its quirks as numerous
events are required to be tested. Mobile apps testing, being an evolving
domain, carries certain challenges that should be accounted for in the
overall testing process. Since smartphone apps are moderate in size so
we consider that model-based testing (MBT) using state machines and
statecharts could be a promising option for ensuring maximum
coverage and completeness of test cases. Using model-based testing
approach, we can automate the tedious phase of test case generation,
which not only saves time of the overall testing process but also
minimizes defects and ensures maximum test case coverage and
completeness. In this paper, we explore and model the most critical
modules of the mobile app for generating test cases to ascertain the
efficiency and impact of using model-based testing. Test cases for the
targeted model of the application under test were generated on a real
device. The experimental results indicate that our framework reduced
the time required to execute all the generated test cases by 50%.
Experimental setup and results are reported herein.

Keywords: Android app testing, Model-based testing, Functional
testing, Smartphone app testing, Test case generation.

1. Introduction

Software testing is a nontrivial phase in the software development
process and 50% of the total effort is consumed during this phase [1]. Software
testing is the process of finding defects in the software. In manual testing, the
tester explores the core functionality of the software and develops test cases
accordingly. Automation of the testing process not only reduces the time and

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

64

efforts of software testers but also ensures the correctness of the application.
Software tools specifically designed to execute test scripts and compare the
generated output with the expected output are used in the automated testing
process. However, automated testing can computerize only some steps of the
overall testing process. Hence, human intervention is always required to
perform automated testing.

Model Based Testing (MBT) is performed by using a model of the app
that depicts the functional behavior of the software. A model describing
software under test (SUT) is an abstract representation that describes how the
software works. Test cases derived from a model are functional tests on the
same level of abstraction as that of the model. Test cases are collectively
known as an abstract test suite. When the model of an application is traversed
end to end, it provides a potential test case of a specific module or branch of
the application. Ideally, a model is traversed completely to ensure that the
application is fully explored, and no path or branch of software is ignored
during modeling of the application under test (AUT). An abstract test suite
cannot be directly executed as abstract test cases require modifications to
transform these into executable scripts. Executed scripts generate results of
the testing process which can be analyzed manually or using the third-party
tool as per requirements of the test plan.

Smartphone apps are getting popular – from entertainment to games
and from utility to mission-critical systems, there is a huge pool of smartphone
apps. The mission-critical smartphone apps are in the areas of health, banking,
e-business/commerce, and transport management sectors, etc. Mobile apps
are greatly exposed to users so there are chances of use case deviations and
these apps have their quirks for testing as a high number of events are needed
to be tested [2]. Security is an important aspect of smartphone apps [3]. Like
web apps, mobile apps also communicate with live servers and cloud so the
need for security, performance, and stress testing arises for the mobile
platform [4]. Smartphone app testing carries certain challenges [5] which
mainly pertain to the interpretability of mobile platforms with web, third party
systems, and cloud. Other challenges relate to limited memory/space,
UI/display, battery life, and storage [6]. Smartphones carry several features
that general-purpose IT products normally do not possess like GPS, Bluetooth,
and accelerometer. These features require additional considerations and
efforts when testing mobile apps. Mobile apps are getting more complex in
nature, bigger in size, and available for a multi-user environment, therefore,
manual testing of such apps is no more viable.

There are several test automation techniques like MBT [7], Record and
Replay [8], GUI-based App Testing [3], Robotic Testing [9], Model Checking
[10], Targeted Testing and Conformance Testing [11], etc. Automation can be
achieved at different stages of testing like test case generation, test data
generation [12], test case execution, model generation [13] from requirement
specifications, and code generation from the model. For MBT, unified modeling
language (UML) diagrams are used to illustrate the functionality of SUT. UML

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

65

diagrams are designed to portray specific angles or views of the system. MBT
facilitates automated testing by making an abstract model of the SUT which
can be translated into a tool readable format to facilitate test case generation
of the SUT.

MBT has been successfully employed to test conventional software
[14], [15]; therefore, we consider that the same approach can be exploited to
automate the testing process for mobile apps. For automatic generation of test
cases, activity, sequence, and statechart diagrams are ordinarily used to
identify the functional behavior of the system. Yet there is no tool available to
generate test cases for an AUT automatically. The existing techniques endure
some drawbacks which serve as research impetus to overcome these issues. A
major issue in adapting the MBT approach is the state explosion [14], [16]–
[18] i.e., it becomes difficult to manage model space when the size of the app
increases.

The focus of this study is to generate automated test cases of
smartphone apps particularly for the Android platform using model-based
approach. Android is the leading smartphone operating system (OS) followed
by iOS. Also, it is a Java-based OS and the majority of mobile apps have been
developed in Java language. For model creation, we use state machine
diagrams or statecharts to model application behavior, functionality, and user
interaction. State machine and activity diagrams are widely used modeling
paradigms [13]. We use state machine or statechart diagrams for AUT
modeling as it is a matured paradigm in the UML domain. Most of the
smartphone apps are state-based i.e., these apps change states according to the
input provided by the user. Also, statechart diagrams are easy to understand,
analyze, and model.

This paper is organized into five sections and this section being the first
section describes an introduction of the different testing approaches. The
second section presents a critical review of the existing testing techniques for
smartphone apps followed by the key challenges, motivation, and problem
statement. The originality of work is described in the third section. We present
our proposed framework for automated test case generation in the fourth
section. In the next section, we provide details of the experimental setup and
experimental results. Finally, we conclude in the last section.

2. Related Works

Mobile apps are event-driven systems that act according to the
generated events, gestures, and context of operations. Several offline testing
techniques are reported in the literature such as the model-based approach
based on a UML activity diagram for testing context-aware smartphone apps
[5]. Amalfitano et al. [1] identified different domains for mobile application
testing e.g., the interface model and call graph model. These models generate
test cases with the help of evolutionary techniques. Tong and Yan [2] proposed
a hybrid technique to improve malware detection rate in Android mobile apps.
It is a generic approach that caters for both static and dynamic approaches to

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

66

detect malware in Android apps. Static analysis is done on the code and
dynamic analysis is a runtime live analysis of AUT. This technique firstly
performs dynamic analysis to collect system calls of an app to form patterns.
This approach is based on evaluating the difference in malware and benign
apps in runtime system calls. For GUI testing, several techniques have been
proposed in the literature including Histogram, SURF, and Template matching.
Lin et al. [3] proposed a GUI based automated testing tool SPAG-C which uses
a record-replay technique to perform GUI testing on Android devices.
However, applications with non-deterministic GUI cannot be tested by SPAG-
C as the AUT screen keeps changing for video or game apps. This approach
works on image capturing mechanism where a camera is used to capture
screenshots of all UI could be affected by external factors like light, exposure,
etc., so a controlled environment is required to execute this tool.

FSM and statechart diagrams are formal yet powerful tools to model a
SUT. Rauf et al. [4] presents a critical analysis of MBT techniques and states
that UML diagrams are mature artifacts of software design to derive test cases.
Activity and sequence diagrams are the focus of the modern researchers in
MBT [14]. A drawback of sequence and activity diagram regarding mobile
systems is the state skipping problem. The activity diagram exhibits the
complete behavior of the system and is a modeling tool for the derivation of
functional test cases. This offers new prospects to develop hybrid models that
embed the merits of different modeling approaches like the completeness of
FSM, coverage of statecharts, the concreteness of activity and class diagrams,
and conciseness of sequence diagram. It is reported that the FSM/statechart is
suitable to test mobile apps through MBT. UML design artifacts can help
achieve significant state coverage, transition coverage, and transition-pair
coverage to fulfill the boundary testing criterion. Swain et al. [7] used the
statechart diagram to automatically generate test cases for object-oriented
software. Whereas, Amalfitano et al. [9] presented a test automation technique
and tool for mobile platform called MobiGuitar which is based on extracting
test cases for the SUT by using its GUI widget. It creates a scalable state
machine model using event-based test coverage criteria, which automatically
creates test cases for SUT.

Manual testing has its own merits like completeness, device
independence, and realism. But sometimes, especially for regression testing, it
becomes a time consuming and tedious task. Mao et al. [10] developed a tool
called Axis for automated black box testing of mobile apps. Idea is to automate
the testing process that requires less human involvement. However, mobile
apps contain several smart gestures such as the compass, swipe gestures,
tapping, etc. that need to be carried out physically to test their correctness.
Espada et al. [11] presented an MBT approach for Android apps to generate
automated test cases. The approach is based on user interactions by modeling
AUT behavior by composing state machines and then exhaustively exploring
the acquired model using a model checking tool SPIN. All of the user behaviors
eventually correspond to potential test cases. The model is obtained in a semi-

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

67

automated manner using the UIAutomatorViewer tool. The generated test
cases are in XML format which is converted into a specification language
processing tool Promela to generate a model by analyzing system
specifications. SPIN uses this model for generating test cases.

Azim and Neamtiu [20] present an approach that systematically
explores Android apps without analyzing its source code. The proposed
approach traverses AUT in terms of usability and explores it in a depth-first
manner to ensure full coverage of the app. Jing et al. [17] present a
conformance testing tool that systematically generates test cases from
requirement specifications and performs a rigorous conformance testing.
Farto et al. [21] analyze MBT in modeling, concretization, and execution of
automated test cases of mobile apps. The study used the Event Sequence Graph
to design the test model and used the Robotium framework to implement the
test cases. Guiterezz et al. [22] present a model-driven approach for test case
generation from the functional requirements. The proposed approach uses
structural model coverage criteria to generate test cases based on transitions
among use cases, particularly at variation points. As test cases are generated
from functional requirements, so requirements should be crystal clear and
non-redundant. To achieve standardization and precision while generating a
UML model from the functional requirements, it would be more appropriate
to employ Natural Language Processing techniques on the requirement
document. Lamancha et al. [23] mechanize the process of test oracle by
automatically producing expected output and comparing it with the actual
output. The study uses state machine diagrams to generate a model of the
(SUT) and model-driven testing. The study uses UML activity, sequence, and
state machine diagrams to elaborate test oracles. Though state machine
diagrams are used for model generation, but for a large-sized application or
complex system, the state machine can be problematic as these can grow
enormously in size.

GUI based testing is common for mobile app testing but sometimes it
cannot be fully applied to those apps where UI heavily depends on user
interaction e.g., multimedia apps. Ramler et al. [24] applied code level testing
to test GUI-rich apps. This study is useful for testing UI gestures (e.g., mouse
clicks, drag & drop, double click, swipe, and holding) of rich interactive
systems. The generated test cases were executed through a testing framework
called jUnit. Dev et al. [15] proposed a GUI testing approach for smartphone
apps based on online MBT and offline MBT. Offline MBT is useful if SUT is well-
conceived i.e., there is no ambiguity in requirements. Online MBT can record
test cases continuously and helps in parallel testing as it can incorporate live
changes in SUT behavior. A drawback of MBT is that it requires special skills
for modeling, analyzing requirements, and scriptwriting. Espada et al. [25]
presented a tool to identify abnormalities in mobile apps. The tool firstly
catches user interactions with the app and then models those interactions
using statecharts. The model is then translated into executable XML and Java
scripts. Salva and Zafimiharisoa [26] presented an Android app security

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

68

testing tool to detect intent-based vulnerabilities on Android components. Tao
and Gao [27] presented the concept and design of mobile testing as a service
that comprises eight different test features in which five are for cloud and
three for generic mobile app testing.

State explosion is a key issue with MBT techniques as state-space
increases substantially while modeling large size software systems. Arcaini
and Gargintini [28] proposed a test case generation technique for distributed
systems using Abstract State Machine (ASM) which is an extended version of
FSM. A major drawback of using ASMs for large size software is the exploration
of state space. Since distributed systems are huge so SUT is divided into
smaller components and MBT is applied to these smaller chunks. This keeps
the state space size under control.

Software is growing in terms of size, complexity, and many other
aspects which make it difficult to test the SUT thoroughly. Generating feasible
test paths for an app that satisfies the overall functionality of AUT is a sound
technique to test mobile apps if test paths are minimal. Ahmad et al. [18]
present an adaptation model for testing mobile apps through refactoring so
that transitions and paths of the app are minimized. Code refactoring
minimizes code size without affecting the functionality of the app and
compromising the test case coverage. Yang et al. [29] proposed a grey-box
approach to automatically reverse engineer GUI-models of mobile apps by
using a testing tool called Robotium. The study performs a static analysis of the
source code to extract the set of user actions supported by each GUI widget in
the app. Morgado et al. [30] also proposed a technique to test mobile apps
using reverse engineering through the identification of behavioral patterns of
its GUI. Gudmundsson et al. [16] applied MBT to test mobile apps using a
command-line tool Kelevra with Appium.

Test case preparation for a large and complex app is a tedious, time-
consuming, and error-prone process due to a lot of human interventions.
Sometimes various testing tasks in the manual testing are repetitive, thus
making it a boring and tedious job for the testers. Automated testing helps
overcome human error and makes the testing process reliable [31]. However,
no tool is yet capable of full-fledged automatic testing of smartphone apps. The
unique features of smartphones such as constantly changing context,
interoperability, the unreliability of wireless networks, and limited bandwidth
pose serious challenges for testing mobile apps. The inherent difficulties of
testing mobile apps due to their peculiar nature served as a motivation for us
to formulate an operational framework that will serve as a step forward to
augment empirical investigations in the domain of mobile app testing. We
propose systematically exploring AUT so that essential functions of the app get
priority and path coverage is done based on the most frequently used app
paths. Improving the efficiency of mobile apps testing through automation is
an auxiliary motivation for our study.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

69

3. Originality
With the growing numbers and diversity of mobile device users, new

testing techniques must be studied so that defects can be avoided, and the
quality of mobile applications improved. The testing processes of mobile
applications to improve the design and generation of test cases as well as the
availability of test automation tools should be given special consideration. In
this context, model-based testing (MBT) is among the techniques which can be
used to ensure software quality. MBT permits the automatic generation of test
cases by a model based on the expected behavior of AUT. MBT is an approach
that has several advantages reported in the literature, such as automatic test
case generation, fault detection efficiency, and time and cost reduction for
testing.

From the abridged literature review provided in Section 2, we observed
that various modeling notations such as FSM, UML activity, and sequence
diagrams have been used for test case generation. A novelty of our proposed
framework is that we have used statecharts for developing test models. And to
the best of our knowledge, no other research study has used statechart
diagrams to generate test cases for mobile applications.

The key reason to choose statechart diagrams is that each mobile
screen rendering represents a state in which an app is running. By considering
every screen rendering in AUT as a state, we use statechart to model the app
functionality. Statechart diagrams are a mature paradigm and have been used
to model large and complex software systems so it also serves as a reliable
source to model mobile app interaction and behavior. Furthermore, we have
transformed abstract test cases into concrete test cases and executed these
scripts and generate the test result reports in the TestNG tool. Appium is a
popular open source tool for mobile app testing and we used it for automation
of the testing process.

4. System Design

In this section, we present our proposed framework for automated test
case generation of mobile apps using model-based approach. Figure 1
illustrates the functioning of the proposed framework.

We use model-based approach to automate the test case generation
process. We first track the user behavior with AUT and transform all the
possible use cases into abstract test cases. We use statechart diagrams for app
modeling and consider every possible user interaction as a potential test case.
Initial statecharts are obtained through the interaction of the user with the
AUT. These interactions are then converted into tool readable format with the
help of the Yakindu code generator tool. Yakindu supports the UML design and
development environment.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

70

Figure 1: Graphical representation of the proposed framework

These models are then translated into a readable format for generating

test suites by the model checking tool Appium. After the transformation of raw
models into an executable test case, Test Executer is run to obtain XML or Java-
based test scripts. For script execution, we integrate Eclipse extension to Test
Executor to facilitate the execution of AUT. Eclipse and TestNG are Java-
powered frameworks that offer test script execution. We use Outlook, an email
client app for Android, to perform experiments. We validate the results from a
state coverage perspective and the efficiency of the framework is assessed
based on the number of valid test cases generated per unit time. Another
validation parameter that we contemplate is effectiveness where we ensure
that the generated test cases pertain to authentic functional paths of AUT and
are unique and non-repetitive. A phase-wise detailed description of our
proposed model is provided below.

4.1. AUT Modeling

Our framework is based on a model-based approach where a tester
initially analyzes the functional working of the app by interacting with it in a
user mode. For this purpose, we need a modeling paradigm to model the

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

71

behavior of the AUT. We use statechart diagrams for AUT modeling due to its
previously defined merits. The conceived model of AUT functionality is
manually analyzed by the tester to verify that the model is correct. A statechart
modeling tool Yakindu Suite offers validation parameters of declaring
interfaces, events, variables, and I/O mechanisms to ensure model
correctness. We take Microsoft Outlook mobile app as our AUT and model it
by using Yakindu Suite which allows us to model UML statechart diagrams in
an integrated environment with Eclipse. An added advantage of the Yakindu
Suite is that it allows code generation from the source model into different
languages. Though the generated code is neither complete nor executable, yet
it exhibits a structural view of the model of AUT. From the model of the AUT, it
creates two code files; one is for its use with the “.sgen” extension and the other
is a code file in Java programming language. Generating code in Yakindu Suite
is not straightforward. We need to include libraries that support the
functionality of code generation from the statechart model. The integration of
the Yakindu Suite with Eclipse is the next step in our experimental setup so that
we can create the model and generate code.

4.2. Abstract Test Cases Development

In the next step, we get abstract test cases in the form of model paths.
Each module of the application is modeled separately which enhances the
completeness and uniqueness of the model. For this purpose, we used a depth-
first search (DFS) algorithm to explore the application model systematically.
DFS model exploration takes the user from end-to-end functionality elements
e.g., from the start of the app to any of its exit points, we can have a full path to
test. DFS also helps to reduce the number of repeating and overlapping test
paths.

4.3. Test Scripts Generation

These test paths or abstract test cases are then translated into a working
code by using the Yakindu model translator plugin so that we can execute these
test cases. This plugin generates a generalized code against the input model. It
is important to mention that the acquired code is not a mature script that can
be directly executed. In other words, the translated scripts are like the
architectural view of the model which requires dynamics of user inputs and
interactions like swipes, taps, double taps, hold and drag, etc. By using proper
user inputs and interaction, we convert abstract test cases into concrete test
cases with the help of a model translator.

4.4. Test Scripts Execution

As most of the smartphone apps are state-based so using statechart is a
good choice to visualize the functionality of the AUT to understand what the
app does, whether it is a game or a utility app etc. The overall functionality of
an app is ascertained by either consulting requirements document or by
playing around the app. Modeling is a crucial part of our framework as it

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

72

follows MBT. We model the app behavior using statecharts to generate
abstract test code. Hence, the tester must have expertise in the tools that
support code generation from a UML-based model. We used the Yakindu
statechart modeling tool which allows code generation from a model through
its code generating plug-in. These models are then translated into Java code
which exhibits the general structure of the module or path. These scripts are
in crude form and need to be manually edited so that these can be executed.
We edit these scripts as per our requirements in Eclipse with Appium. We
assert the changes and using these assertions we trigger the app UI including
buttons, drop-down menus, and text boxes, etc. After editing the scripts
manually, we execute these scripts and generate the test result reports in the
TestNG tool. Appium is a popular open source tool for mobile app testing and
we used it for automation of the testing process.

4.5. Test Results Evaluation

Evaluation of the test results is again a manual process which is done by
the tester.

5. Experiment and Analysis

To implement the framework, we model the working behavior of the
app using state machine/chart diagrams. The model contains all the pertinent
interactions of the user with AUT. For instance, a user needs to have a valid
email address before send/receive an email. For a clear comprehension of the
app behavior, we create a separate model for each module so that each path
exhibits a unique functional workflow of the app. The statechart model needs
to be redesigned using specialized tools so that it could be translated into
abstract code. The abstract code is subsequently edited manually to execute it
on a third-party tool. We chose the Yakindu modeling tool to model the
authentication module by interacting with GUI elements of MS-Outlook. The
authentication module contains two input fields: username and password.
Authentication modules are generally based on AND operator i.e.,
preconditions for both the input fields should be true to get access to the app.
On tapping the login button, the app takes the user to an interface to enter the
username. If the username is already registered with the app, this module
takes the user to the next step to enter the password. If both the inputs are
matched, then this module provides user access to use the app or otherwise
displays the message “incorrect username or password.”

On the "Enter Username & Password" state, we pause the state to 1000
milliseconds so that the user can enter username and password without any
hassle. Yakindu allows a minimum of 1000 ms waits for a state. Since it is a
state-based paradigm, we set a timespan to hold a state and after the lapse of
that time, the state can revert to the previous state if no user interaction
happens. Yakindu works on the principle of input and output pair. We need to
create interfaces for every state and declare events and variables to be used
within the state transitions.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

73

When the user provides credentials of his/her email account, the state
of the model is changed, and the app module goes into the state of the actual
authentication of credentials. At this stage, the app checks whether the
supplied credentials are valid or not. If these credentials are valid then the
module takes the user to the HOME page of the app or otherwise displays an
error message. Figure 2 shows a general statechart model of the UI of the
authentication module of AUT.

Figure 2: Statechart model of the authentication module

In general, the possible test combinations for 2 input fields are 7 satisfying
n3 - 1 formula. Here, the input field n is 2 corresponding to username and
password. Using this formula, we get the following 7 test cases about username
and password.

TC-1: Correct username and correct password
TC-2: Incorrect username with the correct password
TC-3: Correct username with an incorrect password
TC-4: Incorrect username and incorrect password
TC-5: Empty username with non-empty password
TC-6: Non-empty username with an empty password
TC-7: Empty username and empty password

By grouping test cases into valid, invalid, and missing cases, there is only
one app path TC-1 where app control is smoothly transferred to the next state.
This blissful path comes under the valid case category. Next three cases (TC-2,
TC-3, and TC-4) where either username or password is invalid pertain to the
invalid scenario category. The last three test cases TC-5, TC-6, and TC-7 pertain
to incomplete credentials where at least one of the input fields is missing.
There is an important facet to describe; since we are exploiting GUI elements
of the app, so it is not possible to trigger more than one tapping or clicking
event on the screen. In Eclipse, we access GUI elements from top to bottom and
UiAutomator can only trigger one input or UI element at a time. So, we run the

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

74

script sequentially so that every input/GUI element can be accessed one at a
time. In this way, we get a complete test suite of a test scenario. Some other
cases need to be verified e.g., the checkbox button for the “Remember Me”
option.

All the test cases are executed through assertion made on the input fields
and login button. We have an ID for every UI element like input fields,
pushbuttons, menus, radio buttons, checkboxes, etc. These IDs are accessed by
capturing screen snapshots through UiAutomator and then we declare these in
the script generated by the Yakindu code generator plugin. We apply
assertions on these UI elements and access these through ID. Once the
required UI element is successfully called, we enter data values to determine
the result of the assertion made on the UI elements. The obtained result is the
ultimate result of the test case. After modeling app behavior, we transform
these test paths into abstract test cases that hold information on the path
transitions. These test cases are an architectural view of the test path and need
adjustments in terms of user inputs and variants. Yakindu provides plugins for
different programming languages but we generated abstract test cases in Java
to transform our model into scripts

To run Outlook’s APK file in real time, we need to connect the smartphone
with the Appium tool as it acts as a server for hosting the APK file of the AUT.
For this purpose, we define all the attributes or capabilities of the AUT APK.
For example, the APK name, web-server name, ports to be opened, Android OS
version, absolute path of the APK file, application package source, and the main
activity through which we start capturing GUI elements. Next, we declare the
remote WebDriver which is used to access the port and URL of the remote
server. The generated script is quite generic and we shall refine these scripts
before execution. It is necessary to define all the possible transitions that can
lead to new states. We use assertions to call the input elements of GUI like
input fields, radio buttons, checkboxes, etc. After modification and declaring
all the required variables and their interactions, we transform the abstract test
case into a concrete or executable test case.

Now, this script is in its complete and final form and can be run on any
external environment which supports Java. We execute this script on an allied
tool Eclipse. We set parameters for the execution of test cases which determine
whether the test is a “PASS” or “FAIL”. However, we are not interested in
determining whether the test gets PASS or FAIL as our major focus is to
generate test cases only. But for obtaining the results, we generated test
reports against every test case. We applied assertion on every input element
and access it through its Xpath, className, or ElementID. We access these
elements through the UiAutomator screen capture function which shows all
the available UI elements on the screen. Appium sequentially executes the
script and after script execution, it transfers control back to Eclipse to display
whether the test case was a pass or fail. This report is generated by the TestNG
tool that we integrated with Eclipse for reporting purposes. TestNG is a testing
framework and requires JDK 7 or above to function properly. TestNG supports

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

75

easy annotations, log generation, and allows producing HTML and XML
reports.

The next module is “Send/Receive Email” where we first compose an email.
Firstly, we get the GUI elementID of the “compose” icon or button. Once the
GUI element is accessed, we enter the receiver’s valid email address. Email
clients allow the user to enter up to 25 distinct email addresses in one go
making it a potential test case. After entering the recipient’s email address, the
next input box is to enter the CC email address (es). This step is optional and
can be left empty. The next field is to enter the subject of the email message,
but it can also be empty. The next step of composing an email is to enter the
content of the message. We can verify whether the text editor allows typing in
the text/content making it a potential test case. We can also attach files with
the email message. On tapping the attachment icon, we should have the ability
to attach a file of a maximum of 25MB size from the mobile file directory.
Tapping on the “Send” button should send an email message to the
recipient(s). The sent folder should contain an entry if the email is sent to the
receivers. The following test cases for this module can be generated:

▪ To check the recipient’s address is present or not
▪ To check the recipient’s address count is not more than 25
▪ To check that editor allows composing the message
▪ To check that an attachment can be attached
▪ To check that size of attachment should not be more than 25 MB
▪ To check that the Send button should deliver the message

The next module of the app is “View email” where users can view Inbox
containing the received messages. On tapping a message, the user can view the
sender’s name, subject of the email, content of the message, attachment, etc.
Besides, the user can also reply, forward, delete, print, and move the received
email. From an implementation point of view, these potential test cases are
triggered by the same procedure of acquiring element ID using the capturing
screen in the UiAutomator tool and applying assertions over it. The following
test cases for this module can be generated:

▪ Can a user view the received email?
▪ Can a user view the sender’s email address/name?
▪ Can a user view the subject of the email message? (optional)*
▪ Can a user view the content of the message? (optional)*
▪ Can a user view/download the attachment with the message?

(optional)*
▪ Can a user delete the message?
▪ Can a user recover the email message?
▪ Can a user forward the message?
▪ Can a user reply to the sender?
▪ Can a user print the email message?
▪ Can a user move the message to another folder?
▪ Can a user mark the email message for future use?

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

76

Another important function of the application is that the user should be
able to logout/sign-out or remove his/her account from the app. The mobile
email app does not have any UI element for logout/sign-out in the form of a
button or icon. Users can only sign-out only by removing his/her account from
the app. If a user taps on “Remove Account” in the app's main menu, the user
session gets expired and the login screen appears. Thus, this feature leads to a
potential test case.

Applying MBT on smartphone app testing can produce promising results
in the controlled environment. To verify the efficiency of our framework, we
compare our framework with manual testing and an automated MBT tool. For
this purpose, a domain specialist manually explored the app in play around
manner and generated test cases and we compared results obtained by the
domain experts with the results obtained through our framework. Table 1
shows a comparison of both approaches. We model the app and traverse it in
a targeted fashion so that test cases are unique, complete, and non-repetitive.
This ultimately boosts automation in terms of resource utilization i.e. cost and
time. We targeted those modules of the app that were critical and important
from a functional point of view.

Table 1. Total effort size and steps of the proposed framework.
Proposed Framework

Sr Tasks/Steps Duration
1 Understanding the

functionality of AUT
▪ Consulting documentation 08 Hrs
▪ Preparing notes and

briefs/Understanding AUT
08 Hrs

▪ Going through App/ General
use

08 Hrs

2 Research for the best suitable
choice for tools for
experimental setup

▪ Research for tools selection 24 Hrs
▪ Compatibility checks 16 Hrs

3 AUT Modeling using
statecharts

▪ AUT Modeling 40 Hrs

4 Experimental setup

▪ Tools Installation 04 Hrs
▪ Removing Dependencies 12 Hrs
▪ Server Configurations 06 Hrs
▪ Smartphone Integration 02 Hrs

5 Model translation to code
(Model to structural code
generation)

▪ Model to code translation 01 Hrs

6 Concrete script generation
(Code editing to make
abstract scripts to concrete
scripts)

▪ Manual code editing to
make scripts executable

40 Hrs

7 Script Execution ▪ Script (Test cases)
execution

03 Min

8 Report Generation ▪ Report generation of
executed scripts

02 Min

Total effort size 169 Hrs (approx.)

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

77

Our framework generates the necessary test cases for functional testing
by eliminating repetitive and least critical test scenarios. Table 1 shows the
total effort size of our approach by describing the breakdown of every
task/step. The proposed approach took almost 169 hours for testing an app
for the very first time; whereas, the manual approach took 42 hours to test the
same app. Our approach takes additional time for the initial steps to develop
the model, tools installation, and resolving constraints and dependencies.
However, these steps are just a one-time activity. Our approach is faster and
efficient as compared to the manual approach if we consider the execution
time that our approach takes for the same AUT. The manual approach took 10
hours for a complete cycle and we must go through the same procedure and
steps again and again to test the AUT. But we just have to run the script against
AUT, and test reports can be generated within 5 minutes using our framework
which is 120 times faster in terms of test cases execution time and is best
suited for regression testing. In other words, our approach becomes faster in
the second round onward. As the overall testing process involves various
testing cycles, therefore, our framework not only automates the testing
process but saves testing time significantly.

Steps 1 through 6 in Table 1 are the tasks that are just one-time tasks
and are performed once in the overall testing process. If there will be any
change or tweak in the app, then we just have to modify the already written
scripts and do not have to again perform complete testing of AUT. The same
app was tested manually and Table 2 shows results in terms of effort size.

Table 2. Total effort size and steps in the manual approach.
Manual Testing Approach

Sr Tasks/Steps Duration
1 Understanding the

functionality of AUT
▪ Consulting documentation 08

Hrs
▪ Comprehending AUT 08

Hrs
▪ Going through App/ General use 08

Hrs
2 Executing test cases for AUT ▪ Test cases preparation 08Hrs

▪ Test cases execution 08
Hrs

3 Reporting ▪ Analyzing test results and
reporting the results of executed
test cases.

02
Hrs

Total effort size 42 Hrs
(approx.)

There is always a chance of human error in manual testing. Automation

of the testing process enhances product quality and takes lesser time by
streamlining the entire testing process. Table 3 shows a comparison of both
approaches in terms of effort size.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

78

 Table 3. Comparison of manual approach with the proposed framework in
terms of effort size.

Proposed Framework Manual Approach
Sr Task Duration Task Duration
1 Script (test cases)

execution
03

Minutes
Test cases execution for
AUT

08 Hours

2 The analysis report of
the executed scripts

02
Minutes

Report generation of
executed test cases

02 Hours

Total effort 05
Minutes

Total effort 10
Hours

It can be observed that our framework takes lesser execution time. The

manual approach is an ad-hoc or monkey testing as no model is used in the
testing process and testers do not follow specialized protocol. Manual testing
is the verification of specifications outlined in the requirement document.
Since no usage model is employed in manual testing so computing
requirements coverage becomes difficult. The effort required to implement the
MBT approach is initially quite expensive. The results show that in terms of
man-hours, manual testing performs better in the first go. Contemplating it
from the regression testing or sanity testing perspective, manual testing is
generally considered expensive as testers have to explore every path and
transition of AUT. Yet our framework would require less time to perform
regression and sanity testing, thus reducing the testing time of AUT and
ensuring maximum coverage of paths and transitions.

Table 4. Overall comparison of the proposed framework with the manual
approach.

Outlook Email
Application

Model
Coverage

Test Case
Execution

Time

Test Case
Generated

Test
Case

Executed

Total effort
size

(Man
Hours)

Proposed
Framework

100 % 03
Minutes

28 28 169 Hours

Manual
Approach

- 08 Hours 25 25 42 Hours

Initially, MBT takes considerable time to set up the environment, but if

we analyze performance and results in the long run, we can observe that MBT
performs well in regression and sanity testing in terms of testing time and cost.
In manual testing, there is always a risk that the tester may overlook some
aspects which were not in the previous release and are added in the current
release due to fixing bug. Whereas in such scenarios, MBT takes minimal time
with low resource requirements and provides better testing in terms of path
coverage and product quality.

Smartphone apps are smart and respond accordingly as per user
interactions. These apps are context-aware and react to the input and
environment, therefore testing such applications is not an easy task. Through

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

79

experimentation, we tried to answer our research questions. Our first research
question is to know to what extent MBT can be applied for smartphone app
testing. We found that we can effectively apply MBT on smartphone apps and
can generate test cases automatically.

MBT supports automation but there is as such no complete automation
of the entire testing process. Nonetheless, manual editing is involved in this
process, but we can achieve maximum automation by reducing human
intervention. By analyzing the experimental results, we found that initially,
MBT is substantially expensive. The app can't reach its final form in a single
sprint as it takes several test cycles to ensure the quality of the app. MBT
works better than the manual approach in regression testing. Due to the
repetitive tasks, testers often overlook working functionalities of the app in
the post-bug fixing releases and this could have serious consequences. MBT
ensures end-to-end testing every time and provides reliable testing. The
experimental results show that time to execute all the generated test cases was
reduced by more than 50%, which saved project time and resources. MBT
offers rigorous testing and is helpful in regression testing and ensures
maximum path coverage. However, MBT requires ample modeling knowledge
about UML. MBT can also be problematic if the size of the AUT is large as space
explosion is a major problem with MBT.

6. Conclusion
We presented an MBT framework for smartphone app testing. Our framework
ensures maximum state coverage of the AUT. We used statechart diagrams to
model the functional behavior of AUT. Statecharts are suitable to model state
behavior and events that keep changing according to user interactions. We
validated our framework on the Microsoft Outlook smartphone app and the
results were promising. We automatically generated test cases for AUT using
MBT and this automation process may facilitate regression testing. Statecharts
facilitate modeling apps with minimum functional redundancy and ensure
maximum path coverage of AUT. The test cases generated through our
framework are comprehensive and cover the overall end-to-end functionality
of the app. Though MBT provides a systematic way to test an app in an
automated fashion, still some manual steps are indispensable e.g., modeling
part using a third-party tool is essentially a manual process. However, this step
can be automated by using NLP tools and techniques, which can translate the
functional requirements of the AUT into a UML-based model. Employing NLP
techniques for translating functional requirements to UML notations is
envisaged as a future dimension.

References
[1] D. Amalfitano, N. Amatucci, A. M. Memon, P. Tramontana, and A. R.

Fasolino, A general framework for comparing automatic testing
techniques of Android mobile apps, J. Syst. Softw., vol. 125, pp. 322–
343, 2017.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

80

[2] F. Tong and Z. Yan, A hybrid approach of mobile malware detection in
Android, J. Parallel Distrib. Comput., vol. 103, pp. 22–31, 2017.

[3] Y.-D. Lin, J. F. Rojas, E. T.-H. Chu, and Y.-C. Lai, On the accuracy,
efficiency, and reusability of automated test oracles for android
devices, IEEE Trans. Softw. Eng., vol. 40, no. 10, pp. 957–970, 2014.

[4] R. Abdul, An Improved Model for Model based Software Testing, Int. J.
Comput. Sci. Netw. Secur., vol. 17, no. 1, pp. 151–154, 2017.

[5] A. M. Mirza and M. N. A. Khan, An automated functional testing
framework for context-aware applications, IEEE Access, vol. 6, pp.
46568–46583, 2018.

[6] M. Aamir Mehmood, K. Muhammad Naeem Ahmed, and I. Saleem,
Identifying Test Complexity Metrics for Multicore, Cloud, Mobile,
Ubiquitous and Context Aware Computing, Int. J. Comput. Sci. Inf.
Secur., vol. 14, no. 10, 2016.

[7] R. Swain, V. Panthi, P. K. Behera, and D. P. Mohapatra, Automatic test
case generation from UML state chart diagram, Int. J. Comput. Appl.,
vol. 42, no. 7, pp. 26–36, 2012.

[8] J. Lee and H. Kim, QDroid: Mobile Application Quality Analyzer for
App Market Curators, Mob. Inf. Syst., vol. 2016, 2016.

[9] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon,
MobiGUITAR: Automated model-based testing of mobile apps, IEEE
Softw., vol. 32, no. 5, pp. 53–59, 2014.

[10] K. Mao, M. Harman, and Y. Jia, Robotic testing of mobile apps for truly
black-box automation, IEEE Softw., vol. 34, no. 2, pp. 11–16, 2017.

[11] A. R. Espada, M. del M. Gallardo, A. Salmerón, and P. Merino, Using model
checking to generate test cases for android applications, ArXiv Prepr.
ArXiv150402440, 2015.

[12] M. A. Mehmood, M. Khan, and W. Afzal, Automating Test Data
Generation for Testing Context-Aware Applications, in IEEE 9th
International Conference on Software Engineering and Service Science
(ICSESS), 2018, pp. 104–108.

[13] M. Aamir Mehmood, M. N. A. Khan, and W. Afzal, Transforming context-
aware application development model into a testing model, in 8th
IEEE International Conference on Software Engineering and Service
Science (ICSESS), Beijing, 2017, pp. 177–182.

[14] A. Kaur and V. Vig, Systematic review of automatic test case
generation by UML diagrams, Int. J. Eng. Res. Technol., vol. 1, no. 7, 2012.

[15] R. Dev, A. Jääskeläinen, and M. Katara, Model-based GUI testing: Case
smartphone camera and messaging development, in Advances in
Computers, vol. 85, Elsevier, 2012, pp. 65–122.

[16] V. Gudmundsson, M. Lindvall, L. Aceto, J. Bergthorsson, and D. Ganesan,
Model-based Testing of Mobile Systems–An Empirical Study on
QuizUp Android App, ArXiv Prepr. ArXiv160600503, 2016.

[17] Y. Jing, G.-J. Ahn, and H. Hu, Model-based conformance testing for
android, in International Workshop on Security, 2012, pp. 1–18.

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

81

[18] M. Ahmed, R. Ibrahim, and N. Ibrahim, An Adaptation Model for
Android Application Testing with Refactoring, Int. J. Softw. Eng. Its
Appl., vol. 9, no. 10, pp. 65–74, 2015.

[19] OMG, About the Unified Modeling Language Specification Version
2.0. https://www.omg.org/spec/UML/2.0/About-UML/ (accessed Jun.
16, 2020).

[20] T. Azim and I. Neamtiu, Targeted and depth-first exploration for
systematic testing of android apps, in ACM SIGPLAN international
conference on Object oriented programming systems languages &
applications, 2013, pp. 641–660.

[21] G. de Cleva Farto and A. T. Endo, Evaluating the model-based testing
approach in the context of mobile applications, Electron. Notes Theor.
Comput. Sci., vol. 314, pp. 3–21, 2015.

[22] J. Gutiérrez, M. Escalona, and M. Mejías, A model-driven approach for
functional test case generation, J. Syst. Softw., vol. 109, pp. 214–228,
2015.

[23] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini, and G. Visaggio,
Automated generation of test oracles using a model-driven
approach, Inf. Softw. Technol., vol. 55, no. 2, pp. 301–319, 2013.

[24] R. Ramler, G. Buchgeher, and C. Klammer, Adapting automated test
generation to GUI testing of industry applications, Inf. Softw. Technol.,
vol. 93, pp. 248–263, 2018.

[25] A. R. Espada, M. del M. Gallardo, A. Salmerón, and P. Merino, Performance
analysis of Spotify® for Android with model-based testing, Mob. Inf.
Syst., vol. 2017, 2017.

[26] S. Salva and S. R. Zafimiharisoa, APSET, an Android Application
Security Testing tool for detecting intent-based vulnerabilities, Int. J.
Softw. Tools Technol. Transf., vol. 17, no. 2, pp. 201–221, 2015.

[27] C. Tao and J. Gao, On building a cloud-based mobile testing
infrastructure service system, J. Syst. Softw., vol. 124, pp. 39–55, 2017.

[28] P. Arcaini and A. Gargantini, Test generation for sequential nets of
Abstract State Machines with information passing, Sci. Comput.
Program., vol. 94, pp. 93–108, 2014.

[29] W. Yang, M. R. Prasad, and T. Xie, A grey-box approach for automated
GUI-model generation of mobile applications, in International
Conference on Fundamental Approaches to Software Engineering, 2013,
pp. 250–265.

[30] I. C. Morgado, A. C. Paiva, and J. P. Faria, Automated pattern-based
testing of mobile applications, in 9th International Conference on the
Quality of Information and Communications Technology, 2014, pp. 294–
299.

[31] Sami-Ul-Haq, Khan, M. N. A., Mirza, A. M., Saif Ur Rehman, Raja Asif Wagan,
& Saleem, I. Addressing Communication, Coordination and Cultural
Issues in Global Software Development Projects. EMITTER

Volume 10, No. 1, June 2022

EMITTER International Journal of Engineering Technology, p-ISSN: 2335-391X, e-ISSN: 2443-1168

82

International Journal of Engineering Technology, 9(1), 13-30, 2021.
https://doi.org/10.24003/emitter.v9i1.558

