
EMITTER International Journal of Engineering Technology
ISSN: 2443-1168, Vol. 8, No. 2, December 2020, pp. 477~494

DOI : 10.24003/emitter.v8i2.550

Copyright © 2020 EMITTER International Journal of Engineering Technology ‐ Published by EEPIS

477

An Automated Approach of Detection of Memory Leaks for
Remote Server Controllers

Bhavana D1, Veena M B2, Santosh Kumar Sahu3

1Student, Department of ECE, BMS College of Engineering, Bangalore, India
2Associate Professor, Department of ECE, BMS College of Engineering, Bangalore,

India
3Dell R&D, Bengaluru, India

Email: 1bhavana.d002@gmail.com, 2veenamb.ece@bmsce.ac.in

Received August 30, 2020; Revised November 8, 2020; Accepted December 8, 2020

Abstract
Memory leaks are a major concern to the long running

applications like servers which make the working set to grow with the
program. This eventually leads to system crashing. This paper
discusses a staged approach to detect leaks in firmware of remote
server controller. Remote server controller monitors the server
remotely with many processes running in the background. Any
memory leak in the long running applications pose a threat to the
performance of the system. The approach adopted here filters the
processes running in the system with leaks based on time threshold in
the first stage. These processes with leaks are passed to the next stage
where precise memory leak detection is done using the open source
dynamic instrumentation tool Valgrind. The system leverages an
automated leak detection approach that invokes the leak detection
process on encountering any severity in the system and generates a
consolidated leak report. The proposed approach has less impact on
the performance of the system and is faster compared to many
available systems as there is no need to modify or re-compile the
program. In addition, the automated approach offers an effective
technique for detecting possible leakages in early software
development phases.

Keywords: Memory leak, Remote Server Controller, Firmware,
Valgrind tool, Memcheck

1. INTRODUCTION
Memory leak is a major cause of device instability and performance

issues in software. Early design review of the program is a key factor in the
design of electronic systems with growing design complexity. It helps in early
design stage to overhaul or optimize the system. In the development stage of
embedded systems, this holds bugs minimal. Particularly in embedded
systems, as it causes the long running applications that will eventually run out
of memory. A system running out of memory can lead to slowdown caused by
frequent swapping in and out, and failure in process development due to no

mailto:bhavana.d002@gmail.com
mailto:veenamb.ece@bmsce.ac.in

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

478

more available memory. In addition, memory leakages in certain large
applications and services have had serious consequences. The identification of
memory leaks is therefore very critical and necessary in order to ensure the
software quality. This paper concentrates on memory leak detection of remote
server controller firmware written in C language.

Memory leaks are allocated memory, which is no longer available to the
program. This causes delay in execution of programs through increased
paging, which may cause programs to run out of memory. Memory leaks are
harder to track than unauthorized memory accesses. Memory leaks occur
when a memory block has not been released, and therefore are omission
errors rather than commission errors. These memory leaks are one of the
causes of software aging [1].

Memory leaks significantly impact all computer software whether they
are desktop applications, web services or service applications. The odd
memory leak is often not of significant importance for many trivial
applications or applications with very short lifetime of application and will go
unnoticed. But for larger applications that use a lot of memory or have to run
for a long time (e.g. web servers) memory leaks a grave issue.

Memory leaks and access errors are simple to introduce into a code but
difficult to remove. With the absence of memory access error detection
facilities, it is dangerous for programmers to attempt to actively recover lost
memory, because this may trigger freed-memory access errors with
unpredictable consequences. In contrast, programmers can waste memory
without feedback on memory leaks, by minimizing free calls. Memory leak
reduces the system performance by decreasing the amount of available
memory, increasing the amount of thrashing and eventually causing system
failure or slow down. Memory leaks occurs because of the following reasons:

 unnecessary use of memory and improper allocation of memory.
 failure to release the allocated memory even after the termination of

the program
 deletion of pointer to a memory block leading the block of memory no

longer accessible
 programming languages like C and C++ without the support of garbage

collection may cause memory related issues.
 when a function is returning a pointer to an allocated block of memory,

but the calling routine ignores the returned value.
 occurs when a function containing a local variable which points to a

block of memory, but failure to save the pointer in a global variable
begore the function returns.
Remote sever controllers are basically baseboard management

controllers (BMC) that are embedded in the device for remote monitoring.
Memory leaks in the long running application for monitoring the servers
remotely is a concern to the performance of the system. It does the job of
deploying, tracking, handling, configuring, upgrading, troubleshooting,
monitoring temperature, power and various other parameters and remedying

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

479

servers from any location and without using agents. Any BMC has various
daemons running in it for monitoring particular task. Each of these daemons
may have leaks which on a long run are threat to the system as a whole.

Manual detection of leaks is time consuming as they are concealed
without any imminent symptoms and hard to reproduce. Thus, an automated
approach is required to detect leaks that are efficient and fast. This paper
proposes an automated memory leak detection system through staged
approach. The first stage detects the memory leaks in the daemons based on
time threshold and the filtered daemons with leaks are passed onto the next
stage for leak detection using open source tool Valgrind. Automated leak
detection reduces the manual burden in industrial level testing. To improve
the quality of the software, many programmers use program analysis tools,
such as error checkers and profilers. One such class of tools is dynamic binary
analysis (DBA) tools; they analyse programs at machine code level at run-time.
DBA tools are often implemented with Dynamic Binary Instrumentation (DBI)
which adds the analysis code to the original code. Valgrind is one such DBA
tool. These DBA tools are heavyweight and slow down the analysis process. In
order to reduce this impact, a staged approach is used here. In which the
daemons with memory leaks in the first stage are shortlisted. These shortlisted
candidates are passed to the second stage for leak detection using memcheck
tool.

1.1 Motivating Example

In order to understand the behaviour of the system during memory
leak, a leak is injected into a process running in the remote server controller
and memory usage of that process is collected over time. It is depicted in the
Figure 1. It is clear from the graph that the memory usage of the running
process is increasing over the time and it does not free the memory blocks that
it was allotted after its usage. It is evident that for long running applications it
is a concern as it degrades the performance of the system gradually. There is a
clear need for memory leak detection in long running applications and a
system is designed here to tackle this problem.

Figure 1: Memory Usage of a process with leak over time

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

480

2. RELATED WORKS
Various methods and tools are availale for memory leak detection. This

can be classified into static and dynamic method of leak detection.

2.1 Static method of leak Detection

Static method of leak detetion happens without actual execution of the
program. This method does not necessiate a test environment. Static
approarch of leak detction mainly checks for semantics. It is a type of leak
detection which involves static analysis of the source code. A few tools which
belong to this category are Polyspace, CppChecker, and Flawfinder. Static
techniques include analysis of reachability through a guarded value flow graph
[2], dataflow analysis in a reverse manner or detection of constraint violation
on ownership of the objects [3].The overhead of new test platform can be
eliminated since there is no need to run the test programs in order to find the
leaks. The overhead can be in terms of computational power usage, space
consumption for storage. Static methods provide vast information regarding
the defects as they traverse through every branch in the program.

2.2 Dynamic method of leak Detection

Dynamic memory allocation plays a vital role in C programming.
Various hard to find bugs are caused mainly during dynamic programming.
Freeing an allocated block of memory twice or overrunning the malloced block
and failure in keeping track of addresses of allocated memory block are few of
the common errors which irritates the programmer. These errors are quite
difficult to debug because of the mysterious behavior that they manifest in
them.

Dynamic detection method involves detection of memory leaks during
run-time. Dynamic approaches [4] – [8] detect memory leaks through
instrumentation and program execution. This method records of dynamic
resource allocation and deallocation and then confirms if there are any
memory leaks in the program running. Various tools available which fall under
this category are Rational, Purify DDMEM and Memwatch. Programming
languages such as Java have garbage collector in them for memory
management. However, through this mechanism, not only the removal of
memory leaks can be guaranteed but also this will lead to loss of system
performance.

Despite the tremendous research progress in recent decades, the
detection of memory leaks in industrial scale is still pretty much an unsolved
problem. Most of the state of the art approaches face scalability issues [9] –
[11]. Memory leak detection and optimization of the system plays a major role
in the overall behavior of the system. Even though there has been a huge
contribution in this field, industrial level scaling has not yet been achieved and
various systems proposed require recompilation of the source code. In case of
static memory leak detection, because of the path explosion problem and
extensive use of the constraint solver, symbolic execution tools such as, CSA

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

481

[12] do not scale out to large programs. VFG-based model for memory leak
detection is the cause for the failure of leak analysis scalability [13]. However,
in case of dynamic approaches, the leak detection is achieved by
instrumentation and program execution. Unlike the static approaches,
dynamic leak detection approaches have relatively low false positive rate as
they can access the program at runtime. Dynamic approaches indeed face the
problem of overhead. In order to avoid high overhead, the number of
candidates that are passed for leak detection through dynamic
instrumentation can be limited by the staged approach as discussed in this
paper.

3. ORIGINALITY

Memory leaks cause an application’s working set to grow as the program
runs. If the program runs long enough, memory leak increases and eventually
leads to system crashing. In case of resource constrained embedded system,
detecting memory leakage is a major concern as there is a need to operate with
limited available memory. Here an industry scalable memory leak detection
system with two staged approach is developed that address time constraints
and performance hindrance in the existing approaches.

Memory leak detection in a Remote Server Controller for industrial level
scaling is proposed in this paper through an automated approach. The leak
detection system leverages two staged approach in order to minimize the
impact of the memory leak detection process on the performance of the BMC
or any long running embedded system for that matter. Time-threshold based
leak detection is involved in the stage one of leak detection which has low
impact on the target system. The candidates for leak detection are filtered
through this stage and only those with possible leaks are passed to the second
stage where a precise leak detection is done using open source tool Valgrind.
This developed system is useful in software quality analysis which helps in
overall product development life cycle.

4. SYSTEM DESIGN

Memory leaks in the Server Controller firmware is done through a staged
approach. Any Baseboard Management Controller (BMC) may face critical
scenarios in it like those that are related to hardware malfunction such as
backplane or power supply issues. It has multiple daemons running on it for
remote monitoring of the server. Leaks impact the performance of such
systems. The system proposed uses time- theshold method and dynamic
binary instrumentation tool for memory leak detection.

4.1 Dynamic binary Instrumentation

Dynamic binary analysis tools can be easily built using Dynamic Binary
Instrumentation (DBI) framework [4]. DBA tools analyse the program at
machine level code at run-time where the analysis code is attached to the main
code at runtime. This is useful for the users because there is necessity of

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

482

recompilation or relinking. It also offers the user-mode code a 100%
instrumentation coverage, without demanding for source code.

Heavyweight DBA tools can be built by DBI framework like Valgrind.
Valgrind tools are developed to the core of Valgrind as plug-ins, written in c.
The basic view is: core Valgrind + plug-in tool = module Valgrind. Valgrind, like
many other DBI systems, uses dynamic binary re-compilation. A Valgrind tool
is invoked through a command by adding Valgrind – tool = (plus any Valgrind
or tool options). The specified tool starts working, loading the software
program into the same process one tiny block of code at a time, in a fashion
guided just-in-time by execution. The core disassembles the program block
into an intermediate representation (IR), instrumented by the device plug-in
with analysis code, and then translated back into computer code by the core.
The corresponding translation is preserved to be rerun in a code cache as
required. Memcheck records all the calls into the functions of the dynamic
memory allocator available in the malloc family. When launching the
Memcheck device, there are many choices which can be transferred to the
Valgrind command.

4.2 Remote Server Controller

Remote sever controllers are usually Arm-based System on chips (SoC)
that are deployed in the server motherboard. The main function is remote
access and monitoring of the server. This enables easy configuring,
deployment of the sever without physical interference. They inform the
administrator for any faults or malfunction in the system. Any remote sever
controller is usually a BMC. It has various processes running in the background
as daemons analysing each subsystem. The firmware is the software that
actually tells the hardware what to do. The firmware is flashed on to the BMC.
Any daemon with leak is a concern to the user as the available memory in the
BMC is in terms MB. With such limited memory availability and constraints on
the resources, leak detection becomes a must.

4.3 Overview

In case of production environment any changes in the build generated
must go through various tests before release. This is a time consuming and a
repetitive procedure. With thousands of lines of code for each daemon, finding
the leaks related to memory becomes a tedious job for any programmer. The
proposed system here concentrates on this issue. The leak detection process
has been automated for ease of the programmer. The object file for the stage
one of the leak detection and the Valgrind tool must be installed in the target
system.

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

483

Figure.2. Block Diagram of Memory Leak Detection System for Remote Server
Controller

The proposed system monitors the BMC for any criticality in the system
using Remote Access controller administrator. If there is any criticality found,
it triggers the automated memory leak detection block. The criticality in the
system can be found by looking for the remote administrator log files. The time
range between which the criticality in the system is prompted. Once the user
inputs the required time range, search for criticality in the system is done. If
there are any critical situations found, it immediately invokes the leak
detection block. The automated memory leak detection system proposed in
this paper is shown in Figure 2. The proposed design is implemented on a
Linux machine with Remote Server Controller Firmware flashed in it with
resource constraints.

The stage one of leak detection is based on the live time time of the
memory alloction functions such as malloc and calloc. It is achieved by hooking
memory functions through LD PRELOAD. The algorithm 1 shows the details of
the process. Here if the alloc_count is equal to dealloc_count then program
return 0 that is There is no requirement of altering or re-compiling the
specified program, and the detection could be enabled or disabled during
target run. To monitor references to allocated memory blocks one must first
recognize where such blocks are positioned. Functions like malloc, calloc,
realloc and their variants are considered for this purpose.

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑙𝑒𝑎𝑘 = 𝑛𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 𝑛𝑎

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 = 𝑛𝑑

 𝑛𝑙 = 𝑛𝑎 − 𝑛𝑑 (1)

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

484

𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑐𝑜𝑢𝑛𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑠ℎ

𝑓𝑟𝑒𝑒_𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑐𝑜𝑢𝑛𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑠ℎ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑙𝑒𝑎𝑘 = 𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑐𝑜𝑢𝑛𝑡 − 𝑓𝑟𝑒𝑒_𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑐𝑜𝑢𝑛𝑡 (2)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑙𝑒𝑎𝑘 = 𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑠𝑖𝑧𝑒 − 𝑓𝑟𝑒𝑒_𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑠𝑖𝑧𝑒 (3)

The replacements call through to the initial functions in case of allocations and
then record their return values. This recording takes place with the blocks
having their start address hashed. While only the count of references to a
block's start address is performed, this provides sufficient flexibility with
respect to searching. The number of bytes still allocated and deallocated when
the program exits at given time threshold (𝑡𝑠ℎ) is recorded. The basic way to
detect memory leaks is through equation (1). This logic is applied in as shown
in the equation (2) and equation (3) to find the blocks and bytes of memory
leak respectively. If the 𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑠𝑖𝑧𝑒 and 𝑓𝑟𝑒𝑒_𝑒𝑥𝑝𝑖𝑟𝑒𝑑𝑠𝑖𝑧𝑒 is found to be equal,
it is taken as there is no leak else any value greater than 0 is taken to be the
bytes of memory that is leaking. If the memory function lives longer than the
set threshold it takes the memory as leak. The time limit should be set as per
the scenarios by the user. For instance, if users debug a keep-alive HTTP server
and there are connections that last for over 5 minutes, users should set the
threshold to 300 seconds to compensate it. hen any memory is supposed to be
released in 2 second by the system, the threshold should be set to 3 seconds to
obtain the report in time. The time threshold is set to 5 seconds, which is
minimum value so that no leaks are missed. This can be changed as per the
requirement of firmware. The report consists of full call stack at a dubious
memory leak point and makes it easier to use compared to other similar
libraries. It is easy to use as well as displays a complete call-stack at the spot
of suspected memory leak. The flow diagram of this stage is shown in Figure 3.
Following are the flags for the ease of the user:

--LEAK_EXPIRE=<threshold_time>

If a memory block is found to be not frees at the time threshold it is logged.
This value is set according to the requirement as explained above.

--LEAK_AUTO_EXPIRE=<filename> [False]

If this flag is set to be true, the threshold time is automatically increased if the
any block frees after the time expiry. This value is set to be false as default.

--LEAK_LOG_FILE=<filename>

Input the file location where the log files for leak details are to be future stored,
this location is defined as tmp on the device by default. The flags
corresponding syntax and input are shown in Table 1.

Table 1: Various flags under the stage one of memory leak detection

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

485

Flags Syntax Input

LEAK_EXPIRE --LEAK_EXPIRE=<threshold_time>

tsh

LEAK_AUTO_EXPIRE --LEAK_AUTO_EXPIRE=<true|flase>

Default=false

LEAK_LOG_FILE --LEAK_LOG_FILE=<filename>

Log file

location

Algorithm 1: Threshold based memory leak detection

Input:

 Time-threshold (𝑡𝑠ℎ), leak report location

Output:

 Stage one leak report, filtered candidates with leak

1: //initialise alloc_count and dealloc_count

2: // record the bytes allocated and deallocated

3: if (t< 𝑡𝑠ℎ)

5: alloc_count = record_alloc_count(item)

6: dealloc_count = record_dealloc_count(item)

7: end else

8: else

9: if alloc_count = dealloc_count

10: //no leak

11: discard(item)

12: end if

13: else

14: //leak found

15: save(item)

16: end else

17: end else

18: report_leak()

The replacements call through to the initial functions in case of allocations and
then record their return values. This recording takes place with the blocks
having their start address hashed. While only the count of references to a
block's start address is performed, this provides sufficient flexibility with
respect to searching. The number of bytes still allocated and deallocated when
the progam exits at given time threshold (𝑡𝑠ℎ) is recorded. As shown in the
equation (1), if the value of 𝑛𝑙 is found to 0; the its taken as there is no leak else
any value greater than 0 is taken to the byes of memory that is leaking. If the
memory function lives longer than the set threshold it takes the memory as
leak. The time limit should be set as per the scenarios by the user. It is easy to

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

486

use as well as displays a complete call-stack at the spot of suspected memory
leak. The flow diagram of this stage is shown in Figure 3.

Figure 3. Flow Diagram of time-threshold based leak detection

During the second stage, the daemons found to have leaks in the stage
one are passed onto this stage. Here the leak detection of the firmware is done
using Memcheck tool. The Valgrind tool is deployed on the target machine. The
filtered daemons from the stage one are checked for the memory leak and the
leak summary is generated for each daemon. The memcheck tool adds its
instrumentation code to the source code and returns back to the valgrind core.
The valgrind core sends the source code to the selected tool, the tool adds the
instrumentation code and sends back to the core. The valgrind core executes
each process as a child process and logs the leak report. The flow diagram of
automated approach is shown in Figure 4.

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

487

Figure 4. Flow Diagram of the Automated Leak Detection Block

Since the target system has very little memory all the report generated
are moved to the host system using the Common Internet File System (CIFS)
protocol which is suitable for sharing files on a Local Area Network (LAN) as
do not want to burden a resource constrained system. Here the log to csv file
conversion is done in order to generate a confined report with only the
required information in it there by saving the burden on the user to go through
each daemon report line by line. All this process has been automated to ease

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

488

the process of testing in industry level. Figure 8 depicts the flow of the leak
detection process.

5. EXPERIMENT AND ANALYSIS

The proposed leak detection system was deployed in a Remote Server
Controller environment for its performance evaluation. Since the target device
to which the memory leak detection has to be done is BMC, the test object is
BMC firmware. It is an Embedded Linux system kernel with limited memory in
terms of few MB. Usually there are more than 50 daemons running in the
system each with thousands of lines of code, this makes the memory leak
analysis complex.

5.1 THRESHOLD BASED LEAK REPORT

The staged approach gave accurate result of memory leaks in the
firmware. The output of the first stage with leak is shown in Figure 5 which
considered a leak if the memory function lives longer than the given threshold
time and this daemon was passed to the next stage for detail and precise
analysis of the leaks.

Figure 5. Leak Details obtained from time threshold-based leak detection

5.2 VALGRIND LEAK REPORT

Instead of checking the complete set of processes running in the system
for memory leaks only the ones with suspicious leaks are passed to the second
stage. Since Valgrind as comparatively higher overhead, the number of
candidates passed to this stage is filtered in the first stage itself.

The leak summary obtained by Valgrind Memcheck tool is shown in
Figure 6. The PID: 375 indicates the parent process ID, that is the valgrind
memory leak detection process ID. This parent process invokes the child
process that is leak_malloc which runs in the synthetic CPU of the valgrind
core. Here the the memory related functions are monitored Here in the leak
summary of Valgrind, each parameter is as follows:

“Heap Summary” shows you the number of bytes in use when the
program ends, the number of allocations of memory (each time the new
operator is used), the number of frees (every time the free/delete
operator is used) and the overall number of bytes allocated.

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

489

“Leak Summary” shows the amount of memory leaked by the program.
Anything lost means that the program can no longer reach a certain
heap allocated memory.
“Error Summary” shows the total number of errors that occurred
during the execution of the program.
"definitely lost" represents the program is leaking memory and they
must be fixed
"indirectly lost" indicates that there is leak in the pointer-based
structure of the program. (E.g. if "definitely lost" is the root node of a
binary tree is, all the "indirectly lost" leaks will be the children.) By
fixing the "definitely lost" leaks, the "indirectly lost" leaks will be fixed
too.
"possibly lost" represents that there are memory leaks in the program
as a result of unusual usage of the pointer.
"still reachable" shows memory leaks on account of failure to free the
allocated memory. These types of leaks are quite common.

Figure 6. Leak Summary obtained by Valgrind with definite leaks

6.3 RESULT ANALYSIS

The number of candidates for memory leak detection through Valgrind was
filtered in the first stage. There by the time consumed because of the addition of
instrumentation code by the tool memcheck to the test code which slows down the
time required for the source code execution was reduced. This also reduced the
impact of heavyweight analysis tool on the host system. In order to analyze this, test

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

490

was conducted with various background processes running in the Remote Controller.
The time requirement for memory leak detection with and without automation,
memory leak detection of all the running processes in the firmware was analysed. The
manual leak detection involves obtaining leak reports for each process by passing
valgrind command for normal approach. It was found through repeated manual
execution of valgrind command that the time without automation was found to be 425
minutes in average. And for the staged approach, the daemons with suspected leaks
in stage one are checked for leaks in the same way. It was found that the average time
taken for obtaining leak report through Valgrind was found to be 5 minutes and would
have to be killed forcefully else would take around 20 minutes for the generating the
same report. So, in the automated approach, the code is designed to take care of this
by killing the child process of valgrind which runs more than 5 minutes or go to the
next process if it takes less than 5 minutes. This take limit can be varied depending on
the behaviour of the firmware. Table 2 depicts the total number of candidates for
memory test, candidates in stage two, normal approach which the direct use of stage
two without filtration.

Table 2. Number of leak check candidates with and without staged approach

Approach

No of

candidates
in stage 2

Total test
candidates

Time w/o
automation(min)

Time with
automation(min)

Staged
Approach

48 75 425 90

Normal
Approach

75 75 480 150

These test programs monitor each service for the controller, they may
or may not have leak in them. These candidates have thousands of lines of code
which makes them complex for analysis. It was obtained from the tests
conducted that the number of candidates for leak test that were passed to the
second stage from the stage one of threshold-based leak detection is 48. Only
64% of the initial test candidates were passed to the final phase of leak
detection. The figures given in the Table 3 clearly showed that the staged
approach reduced the overall effect on the system because of heavyweight
framework. This was achieved by filtering out the leak detection candidates in
the first stage. In order to analyze the accuracy of the staged approach, various
test programs with no leak and few with injected memory leaks of different
variations were tested.
The accuracy of the stage one of memory leak was evaluated. In order to
evaluate this following parameter were considered.

TW – Total number of test candidates
TP – Number of True Positives, there is memory leak and it is reported
correctly.
TN – Number of True Negatives, there is no leak and it is reported
correctly.

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

491

FN – Number of False negatives, there is leak but reported wrongly as
no leak
FP - Number of False positives, there is no leak but reported wrongly
as leak

Table 3. Results of time threshold-based leak detection

TW TP TN FN FP

59 28 20 4 7

The values obtained in test results are replaced in equation (4) in order to find
the false positive rate.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(4)

 The total negatives (FP + TN) that is the number of candidates with no
leak. This analysis showed that the false positive rate is 16.6% which is an
acceptable value. This approach has lower false positive rate compared to the
static leak detection approaches with better accuracy. And the complete
details of the leak such as the position of the leak occurrence is obtained in the
second stage. Valgrind does not affect the performance of the system as it runs
the target program in its virtual CPU environment without any need for
recompilation or altering the program.

The memory leak reports obtained were moved to the target system
through CIFS protocol by prompting the user for IP address and the password
of the system where the leak reports were to be moved. The leak reports range
from 50 line to thousands of lines for each daemon, it is time consuming to go
through each report. In order to ease the memory leak log files analysis, the
log to csv file conversion is done. The target system is a baseboard
management controller firmware which has various daemons for internal
functionalities which have been named as daemon1-20. The analysis is done
for the complete BMC firmware with all the running daemons with each source
code with more than thousands of lines. The result obtained is shown in Figure
7. has a few of the daemons for which analysis was done.

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

492

Figure 7. Confined report of memory leak

Figure 8. Time consumption for memory leak report generation with and without
automation

The automated approach required less than 50% of the time required
for manual analysis. The graph shown in Figure 8 depicts the time
consumption for memory leak detection with and without automation. The
parameters on the x-axis represent different daemons D1, D2, D3, D4 and the
y-axis represents the time required to generate leak report for respective
daemon. It also took care of termination of the child process initiated by the
Valgrind which runs for indeterminate amount of time for few daemons. There

Sl_no Daemon Leak Summary Heap summary

1 Daemon 1 killed or no leak report killed or no heap report

2 Daemon 2 killed or no leak report killed or no heap report

3 Daemon 3 definitely lost: 421 bytes in 2 blocks
 total heap usage: 1,232 allocs, 1,219 frees, 132,222 bytes allocated

4 Daemon 4 definitely lost: 56 bytes in 2 blocks
 total heap usage: 2,963 allocs, 2,956 frees, 1,646,106 bytes allocated

5 Daemon 5 definitely lost: 32 bytes in 4 blocks
 total heap usage: 4,057 allocs, 4,051 frees, 1,334,134 bytes allocated

6 Daemon 6 killed or no leak report killed or no heap report

7 Daemon 7 definitely lost: 72 bytes in 4 blocks
 total heap usage: 6,864 allocs, 5,744 frees, 2,230,867 bytes allocated

8 Daemon 8 killed or no leak report killed or no heap report

9 Daemon 9 definitely lost: 55 bytes in 5 blocks
 total heap usage: 1,350 allocs, 1,342 frees, 227,975 bytes allocated

10 Daemon 10 killed or no leak report killed or no heap report

11 Daemon 11 killed or no leak report killed or no heap report

12 Daemon 12 killed or no leak report killed or no heap report

13 Daemon 13 definitely lost: 3,816 bytes in 53 blocks
 total heap usage: 96 allocs, 96 frees, 59,044 bytes allocated

14 Daemon 14 definitely lost: 16 bytes in 2 blocks
 total heap usage: 6,544 allocs, 6,410 frees, 7,640,859 bytes allocated

15 Daemon 15 killed or no leak report killed or no heap report

16 Daemon 16 killed or no leak report killed or no heap report

17 Daemon 17 definitely lost: 0 bytes in 0 blocks
 total heap usage: 2,905 allocs, 2,903 frees, 1,085,955 bytes allocated

18 Daemon 18 killed or no leak report killed or no heap report

19 Daemon 19 killed or no leak report killed or no heap report

20 Daemon 20 definitely lost: 0 bytes in 0 blocks
 total heap usage: 0 allocs, 0 frees, 0 bytes allocated

0

2

4

6

8

10

12

14

16

D1 D2 D3 D4 D5

T
im

e
(m

in
)

Daemons

Time Consumption

Automation Without Automation

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

493

were certain daemons which run without termination. Therefore, in order to
avoid this problem, the leak detection is designed to kill the daemon after the
given time range in stage-2. This proposed system of automated leak detection
helps in uninterrupted software testing in the industry. However, the
limitation of the work is that the instrumentation overhead is high in stage 2.
There is scope for alternate approach in stage 2 of leak detection.

 6. CONCLUSION

Detection of memory leaks is of significant importance for software
quality analysis and testing. However it is a tedious task detect leaks with
millions of lines of code at an industrial level. The impact of memory leaks on
the free available memory of the controller is studied here. It is found that the
long running processes with leaks led to decrease in the memory availabily in
the controller. This paper presents an automated approach of two staged
detection of memory leaks in the firmware for Remote Server Controllers. The
first stage of leak detection is lightweight and filters the daemons with
memory leak based on time threshold analysis. The second stage involves leak
detection with the open source tool, valgrind memcheck. The number of
candidates in the second stage of dynamic leak detection is reduced through
time threshold-based leak analysis. It is evident from the test analysis done
that the time requirement for leak detection through automation is less than
50% of the time required through manual analysis. False positive rate of the
stage one found to be 16.6 % which is better compared to various available
approaches and there is less impact on the overall performance of the system
as Valgrind tool runs the leak detection analysis in its synthetic CPU without
disturbing the services running in the remote controller.

The future work is to lower the instrumentation overhead of memcheck
tool in the stage 2. Various other tools such as cachegrind, callgrind and massif
are available under Valgrind, these tools can be utilized for memory profiling
and optimization of leak detection process. The proposed memory leak
detection system targets Baseboard Controller firmware, this can be extended
to other real time embedded systems with memory constraints.

There is no recompilation or program alterations needed in both the
stages of leak detection. This approach of leak detection is suitable for any
embedded system with resource constraint and can be scalable for industrial
applications. The false positive rate achieved is acceptable. The detection of
leaks in the software at an early stage helps in improving the software quality
there by leading to better throughput.

Acknowledgements
The authors would like to thank Dell Research and Development, and BMS
College of Engineering Bangalore for providing the opportunity to carry out
the work.

Volume 8, No. 2, December 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

494

REFERENCES

[1] F. Machida, N. Miyoshi, Analysis of an optimal stopping problem for
software rejuvenation in a deteriorating job processing system,
Reliability Engineering & System Safety, Vol. 168, pp. 128 – 135, 2017.

[2] S. Cherem, L. Princehouse, and R. Rugina, Practical Memory Leak
Detection Using Guarded Value-flow Analysis, ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp.
480–491, 2007.

[3] D. L. Heine and M. S. Lam, Static Detection of Leaks in Polymorphic
Containers, International Conference on Software Engineering (ICSE),
pp. 252–261, 2006.

[4] Nicholas Nethercote, Julian Seward, Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation, Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, USA, 2007, pp. 89-100, 2007.

[5] James Clause, Alessandro Orso, Leakpoint: pinpointing the causes of
memory leaks, Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, Vol. 1, pp. 515–524, 2010.

[6] Matthias Hauswirth, Trishul M. Chilimbi, Low-overhead memory leak
detection using adaptive statistical profiling, ACM SIGOPS Operating
Systems Review,Vol. 38, No. 5, 2004.

[7] Konstantin Serebryany and Derek Bruening, AddressSanitizer: a fast
address sanity checker, Proceedings of the USENIX conference on
Annual Technical Conference, pp.28, 2012.

[8] Changhee Jung, Sangho Lee, Easwaran Raman, Santosh S Pande,
Automated memory leak detection for production use, Proceedings
of the 36th International Conference on Software Engineering, pp. 825–
836, 2014.

[9] R. Beneder, B. Glatz, M. Horauer and T. Rauscher, Memory leak
detection runtime-service for embedded Linux devices, Proceedings
of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
Barcelona, pp. 1-6, 2014.

[10] Y. Sui, D. Ye and J. Xue, Detecting Memory Leaks Statically with Full-
Sparse Value-Flow Analysis, in IEEE Transactions on Software
Engineering, vol. 40, no. 2, pp. 107-122, Feb. 2014.

[11] Xiaohui Sun, Sihan Xu, Chenkai Guo, Jing Xu, et al. A Projection-based
Approach for Memory Leak Detection, 42nd IEEE International
Conference on Computer Software & Applications, IEEE, Vol. 2, pp. 430-
435, 2018.

[12] The LLVM Foundation, Clang static analyzer, 2018.
[13] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou and C. Zhang, SMOKE: Scalable Path-

Sensitive Memory Leak Detection for Millions of Lines of Code, 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), Montreal, QC, Canada, pp. 72-82, 2019.

https://dl.acm.org/doi/proceedings/10.5555/2342821
https://dl.acm.org/doi/proceedings/10.5555/2342821

