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Abstract 
 
Many game applications require fluid flow visualization of shallow 
water, especially dam-break flow. A Shallow Water Equation (SWE) 
is a mathematical model of shallow water flow which can be used to 
compute the flow depth and velocity.  We propose a stable algorithm 
for visualization of dam-break flow on flat and flat with bumps 
topography. We choose Lax-Friedrichs scheme as the numerical 
method for solving the SWE. Then, we investigate the consistency, 
stability, and convergence of the scheme. Finally, we transform the 
strategy into a visualization algorithm of SWE and analyze the 
complexity. The results of this paper are: 1) the Lax-Friedrichs scheme 

that is consistent and conditionally stable; furthermore, if the stability 

condition is satisfied, the scheme is convergent; 2) an algorithm to 
visualize flow depth and velocity which has complexity O(N) in each 
time iteration. We have applied the algorithm to flat and flat with bumps 

topography. According to visualization results, the numerical solution is 

very close to analytical solution in the case of flat topography. In the case 

of flat with bumps topography, the algorithm can visualize the dam-break 

flow and after a long time the numerical solution is very close to the 

analytical steady-state solution. Hence the proposed visualization 

algorithm is suitable for game applications containing flat with bumps 

environments.  

  
Keywords: shallow water equations, dam-break flow, Lax-Friedrichs 
scheme, flow visualization. 

   
 

1. INTRODUCTION 
Serious game application for flood requires an accurate information 

about flow depth and velocity to predict the distribution and to prevent flood 
[1]. Thus, the visualization of fluid flow is essentially needed in flood serious 
game application. However, visual movement of water has not been 
convincingly implemented. This is because many numerical methods are 
unstable for a long time and requires a long computation time. Therefore, we 
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require a stable method for visualization of fluid flow. The goal of this work is 
to investigate a simple method for visualization of fluid flow, to be used in 
game application or as component objects in game development software. In 
this work, we focus on the stability of the algorithm rather than the order of 
accuracy.  

In order to obtain the physical parameters of the flow, it is commonly 
used to formulate the flow into the Navier-Stokes partial differential equation 
system model, and its derivatives such as a Shallow Water Equations (SWE)  
and Saint-Vernant equations. The SWE have been widely used to conduct 
analysis, simulation, and visualization of open fluid flow. Recently, the SWE 
has been used to model many problems, such as tsunami [2]–[4], river flow 
[5], [6], and dam-break flow [7]–[9]. Many numerical methods such as finite 
difference [9]–[12], finite volume [13]–[15], and finite element can be used to 
solve the SWE systems. Lax-Friedrichs, Lax-Wendroff, Leap-Frog scheme are 
the three most popular methods in finite difference to find the solution of 
partial differential equations numerically [11], [12], [16]. In the case of the 
computation cost, we investigate the three schemes and select the fewest 
number of works done. Therefore, we focus on analyzing the reliability of the 
selected scheme for solving SWE systems, specifically looking for complexity, 
consistency, stability, and convergence. Furthermore, we design the 
algorithm based on the selected scheme to visualize the fluid flow. As case 
study, we test the program implementation of the algorithm on the shallow 
dam-break flow environment. 

 
2. RELATED WORKS 

The flow visualization can be done by using Computational Fluid 
Dynamics (CFD) based on Navier-Stokes equations. In creating fluid-like 
animation, three-dimensional Navier-Stokes has been developed to a new 
physics-based model to animate the rotational of gaseous motion [16]–[18]. 
Their visual simulation is based on a finite difference method and an explicit 
time solver. The explicit solvers have a problem for large time, i.e., the 
numerical scheme can become unstable. Jos Stam also simulates the fluid 
using Lagrangian and implicit methods to solve Navier-Stokes equations [19]. 
However, their cost of computation is expensive. Kellomäki simulated a large 
scale of water in games using various methods, one of the methods is SWE 
[20].  

In the case of dam-break flow, the SWE has been widely used to 
visualize the fluid flow [2], [6], [9], [21]–[24]. There are many popular mesh-
based methods for solving the SWE, i.e., a Lax-Friedrichs, a Lax-Wendroff, and 
a Leap-Frog scheme. Ray compared the three schemes applied for a linear 
advection equation, and he shows that the Lax-Wendroff scheme is more 
accurate than the Lax-Friedrichs and a Leap-Frog scheme [25].  Mungkasi and 
Sari solved the SWE for flat topography and tested on a dam-break flow 
environment [26]. They compared three methods, i.e., the implicit collocated 
finite difference method, the explicit collocated Lax-Friedrichs finite volume 
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method, and the explicit staggered finite volume. The Lax-Friedrichs finite 
volume method is stable according to the simulation results and simple to 
compute in terms of implementation of the algorithms. However, they did not 
compare the computation time of the three methods. Furthermore, they also 
did not study the consistency and stability of the three methods. 

   
3. ORIGINALITY 

Generally, the visualization of fluid flow in a game application has an 
arbitrary topography. Usually, the topography is not flat. In this research, we 
focus on flat and bumps topography. We proposed a stable algorithm for 
visualization of shallow water equations. The strategies of the algorithm 
design are choosing the simpler numerical scheme to solve the SWE, 
investigate the consistency, stability, and convergence of the scheme for SWE, 
and transform the strategy into an algorithm. The outputs of the algorithm 
are the depth and velocity of fluid flow. The depth of the flow is depicted in 
the visual movement of the flow every time. The specificity of this algorithm 
is to prioritize the stability and speed of the computation process rather than 
the accuracy of the results. Consequently, this algorithm can be used in 
visualizing fluid flow in serious game applications.  

 
4. PROPOSED METHOD  

We describe the proposed method in the following steps: 
1) Analytical study 

In this step, we investigate the mathematical model of dam-break 
flow. Then, we study the consistency, stability, and convergence of 
Lax-Friedrichs scheme analytically. 

2) Design and Analysis of Visualization Algorithm for SWE 
Based on the analytical study, we design a visualization algorithm 
for SWE. Then, we analyze the time complexity of the algorithm. 

3) Implementation and Test Case 
We implement the visualization algorithm for SWE in Matlab. Then, 
we test the implementation program for some test cases. The test 
cases are dam-break flow where the topography is flat and flat with 
bumps. 

 
Mathematical Model of Dam-Break Flow 

The mathematical model of fluid flow is governed by a fluid flow model, 
which is called a Navier-Stokes equation [11]. In the case of shallow water, 
the one-dimensional Navier-Stokes equations are transformed into one-
dimensional SWE as a state in the system of equations (1) [12]. The first 
component in system of Equations (1) is called the continuum equation and the 
second is called the momentum equation. 
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where 0t  is time variable in second (sec), x  is horizontal space variable in 
meter (m) and x is an element of flow region RL ],0[ , ),( xthh =  denote the 

water flow depth in meter (m), huxtqq == ),(  is a debit of flow in sec2m , 

),( xtuu =  is a velocity of flow in x-direction in secm , 
t
 is first parsial 

derivative with respect to t, 
x
 is first partial derivative with respect to x, g is 

a gravitational constant in 
2

secm , and ),( xtHH =   is the height of river bed. 

We assume that there is no bed erosion and flow sedimentation, so the 
),( xtHH = becomes )(xHH =  and 

x
H

  becomes 

dx
dH . We assume that there is 

no friction in the riverbed. The Jacobian of (1) has characteristic roots 

ghu =12 . 

The initial conditions of the SWE systems are supposed to be 0),0( =xu , 

and water flow depth is described in (2). 
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When the flow is in a steady-state condition, the depth and the velocity of 
flow are unchanged in time t. So that system of equations (1) becomes 
Equation (3) and (4). 
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From equation (3), it means that the debit of flow is constant 0q . If we integrate 

Equation (4), then we obtain an analytical solution of the flow model in steady 
state as in Equation (5) or (6). 
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By arranging Equation (6) algebraically, we got cubic polynomial equation in )(xh  

as in Equation (7). 
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Equation (7) can be solved to obtain the depth of flow at each location, )(xh . We 

used Equation (7) to verify the computational results of the methods which is used 
to solve the SWE.  

If we assume that there is no debit of flow comes into and goes from the 
systems, or 00 =q , then we obtain a lake-at-rest conditions or can be stated as in 

Equation (8). 
 

ConstxhxH =+ )()(    (8) 

There are many analytical solutions for dam-break flow, including by Dressler [13], 
Stoker [14], and  Ritter [15]. When the dam break is instantaneous, the bottom is 
flat, and there is no friction, the analytical solutions for ),( xth  and ),( xtu  are as 

follows [16].  
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where  ,)( 0 lA ghtxtx −=  

 ( ),32)( 0 mlB cghtxtx −+= and  
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The parameter mm ghc = is a solution of (11). 

 ( ) ( ) ( ) 08
2222222 =+−+−− rmrmmlmr ghcghccghcgh  (11) 

 

Computational Strategy and Lax-Friedrichs Scheme 

To find the solution of SWE system (1), we discretized the domain variable t  
and x . We discretized time variable t  into Mttt ...,,, 10 , where 

Mt  is the duration of 

time simulation. We set 1−−= iii ttt for Mi ,...,2,1= , so we obtain statement 

(12).  

 =

+ +=
k

i ik tttZk
10,   (12) 
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The space variable x  is discretized into N equispaced of N
Lx = , or we have 

1+N nodes Nxxx ...,,, 10 where xnxn = for Nn ,...,1,0= . Lets Tk

i

k

i

k

i qhU )(= is 

the solution of system of equations (1) at node ix and at time kt . 

We designed the flow visualization displayed at each time kt . Therefore, we 

choose forward difference discretization scheme in t  variable. The forward 
difference scheme has linear order of accuracy, )( tO  . In order to obtain a more 

accurate solution, we choose centered difference discretization scheme in x  

variable. The centered difference scheme has quadratic order of accuracy, )( 2xO  . 

So, the order of accuracy of the forward in time and centered in space scheme is 

),( 2 txO  . The solution of systems of equation (1) using this scheme is unstable 

for large value of t . To stabilize this scheme, Lax-Friedrichs modified this scheme 

by defining k

iU  as the average of k

iU 1−  and k

iU 1+ . Applying this Lax-Friedrichs 

scheme to system of equations (1), we obtain a system of discrete Equations (13). 

The initial condition of (13) is T
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The numerical solution k

iU can be found by iterating Equation (13). Each 

time step 1+k , we obtain the solution Tk

i

k

i

k

i qhU )( 111 +++ = and the number of 

work done is )(NO . The flow velocities 1+k

iu could be computed using (14). 
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As we see in (14), if the depth of flow near zero, then we will get a numerical 

problem for the calculation of 1+k

iu . 

 
Consistency and Stability of Lax-Friedrichs Scheme for SWE 

A scheme for a system is consistent if the truncation error (
Te ) tends to zero 

when 0→t  and 0→x . A truncation error is a difference between a numerical 
scheme and its differential equation. So, we should check the truncation error of 
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the continuum equation and the momentum equation. This paper only explains the 
truncation error for the continuum equations, while the truncation error for the 
momentum equations could be done in the same way.  

Firstly, we expand the flow depth k

ih and the debit of flow 
k

iq using  

Taylor series as in equations (15)-(19). 
 

...
62 3

33

2

22
1 +




+




+




=−+

k

i

k

i

k

i

k

i

k

i
t

ht

t

ht

t

h
thh  (15) 

...
62 3

33

2

22

1 +



+




+




=−+

k

i

k

i

k

i

k

i

k

i
x

hx

x

hx

x

h
xhh  (16) 

...
62 3

33

2

22

1 +



−




+




−=−−

k

i

k

i

k

i

k

i

k

i
x

hx

x

hx

x

h
xhh  (17) 

...
62 3

33

2

22

1 +



+




+




=−+

k

i

k

i

k

i

k

i

k

i
x

qx

x

qx

x

q
xqq  (18) 

...
62 3

33

2

22

1 +



−




+




−=−−

k

i

k

i

k

i

k

i

k

i
x

qx

x

qx

x

q
xqq  (19) 

We combined the equations (15)-(19) and arranged the combined equations 
into a form (20). 
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The first term of left-hand side of (20) is the numerical scheme of the 
continuum equation, and the second term is the continuum equation. 
Therefore, we took the truncation error of the numerical scheme of the 
continuum equation, as expressed in (21). 
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The limit of the truncation error as x and t tend to zero is zero, or the limit 
is expressed in (22). 



Volume 8, No. 1, June 2020 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

26 

0
0,0

=
→→

T
tx

eLim  (22) 

Equation (22) states that the Lax-Friedrichs scheme for the system of 
equations (1) is consistent. 

Stability is a necessary and sufficient condition for convergence. In 
order to study the stability of the SWE, we use the linear advection eqation. 
That is because, the vectorized form of SWE (1) and linear advection 
equation is analogue. It is well known that the stability of the Lax-Friedrichs 
scheme for the linear advection equation will be achieved when the CFL is 
less than or equal to 1, or 1=



x
tc with c is the speed of advection [17]. In 

the SWE, c is },max{ 21  and the CFL condition could be expressed as 

inequality (23). 
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i ghughu
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t
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So, the stability of the Lax-Friedrichs for SWE could be achieved when 
inequality (23) is satisfied. In other words, the Lax-Friedrichs scheme for 
SWE is conditionally stable. From equivalence theorem of Lax, the condition 
of convergence is consistency and stability. Therefore, if the condition in (23) 
is satisfied, then the Lax-Friedrichs for SWE is stable and convergent. In 
order to support this analytical result, we provide some computational 
experiments in the next section.  

Inequality (23) leads to the strategy of taking the value of it , and we set 

the value of it  as expressed in (24). 

f

iiii
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i S
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x
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
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1

 (24) 

where fS is the safety factor. The value of fS could be set as a constant 

smaller than 1 but close to 1. 
 

Algorithms of Flow Simulation  

Based on the above discussion, the algorithm for visualizing fluid flow can be 
designed as follows. 

 
Input :  Time of simulation 0t  and 

1t , the height of topography 0H , and initial 

values of fluid flow parameters 0

ih  and 0

iu . 

Output : Fluid flow parameters k

ih , k

iq or 
k

iu , and visualization of the fluid flow. 

 
Algorithm: 
1. Initialization step: 

- Variable geometric grids, H(x) 
- Variable flow height ),0( xh , and flow velocity ),0( xu . 
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2. For each time step do: 
- Calculate Δt using Equation (24)  

- Calculate flow parameters 1+k

ih , 
1+k

iq , 
1+k

iu using Equation (13) and (14) 

- Apply the boundary conditions 

- Visualize the flow variables 1+k

ih  and 1+k

iu . 

End of time loop 
 

As we see in the above algorithms, the number of works done in each time 
iteration is )(NO . Then, we implement the algorithm in Matlab, which will be used 

for experiments in the next section. 
  
5. EXPERIMENT AND ANALYSIS 

As mentioned in the Introduction, visualization of fluid is required in 
serious game applications. There are many physical environments 
(topography) in game applications. In this paper, we focus on dam-break flow 
where the topography is flat and flat with bumps. Such situations frequently 
occur in game applications. To verify the correctness of the visualization, we 
compare some numerical and analytical solutions in (8)-(11).  

The first case is subcritical flow in dam-break flow on flat topography, 
or 0)( =xH . The topography and the flow conditions are depicted in Figure 

1. The domain of flow is ],0[ Lx = , where L = 25 m. We assumed that there is 

no fluid flow goes into and out of the boundary, or sec/0 2

0 mq = and 

sec/0 2mqL = . The collapsed dam occurred after sec0=t at location mx 5= . 

At the sec0=t , the depth of flow is expressed in (25) and the velocity at all 

location is sec/0),0( mxu = . 






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=

2502

,505
),0(

xif

xif
xh

r

                     (25) 

 

Figure 1. The topography and initial condition of flow in case 1. 
 
The dam is collapsed at sec0=t . For sec0t , the fluid flows towards 

the right side. The flow conditions at several values of t are illustrated in 
Figure 2. The numerical and the analytical solution for flow depth ),( xth  have 

the same pattern. However, the flow velocity of numerical solution is slightly 
faster than the flow velocity of analytical solution. The summations 



Volume 8, No. 1, June 2020 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

28 

Nhhsum /|)(| 0−  and Nuusum /|)(| 0−  in Figure 2 express the average of the 

absolute difference between flow depth and flow velocity at t seconds and at 
)( tt +  seconds. We found that as time t increases, the average values 

decrease to zero. This means the condition of the flow is going to a steady-
state condition. When 56.15t  sec, the flow depth is constant, and the flow 
velocity is zero. This condition shows that the flow is in a steady state. It is 
suitable with the Equation (8). 

 

 
Figure 2. The profile of depth and velocity of flow beyond dam-break for flat 

topography. 
 

The second case is the dam-break subcritical fluid flow on bumps 
topography. The initial conditions and the domain of fluid flow are the same 
with the previous case. However, the bottom topography of fluid flow )(xH  

is the bumps. We set the height of the bump )(xH  as 





 

=
−−

others

xife
xH

x

0

,137
)(

2)10(

                     (26) 

The collapsed dam occurred after  sec0=t  at location mx 5= . There is no 

exact solution for this type of flow. The result of running program are shown 
in Figure 3. We only capture the visualization of flow at sec0=t , 

sec87.12=t , sec63.1999=t  and sec24.2010=t . During the visualization 

process, when time t  goes to large value the flow goes to steady state 
condition. This is suitable with the steady-state analytical solution in (8). 

 The next numerical investigation is about the convergency of the 
numerical solution. A numerical solution is said to be convergent if we set the 

t  and x tends to zero, then the numerical solution must tend to the exact 
solution of the mathematical model. For this purpose, we defined the 



Volume 8, No. 1, June 2020 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

29 

differences between the exact and numerical solution as an error 
1L  as 

expressed in Equation (27). 

 =
−=

N

i

c

i

e

iN
uuL

1

1
1

                     (27) 

where e

iu is the exact solution and 
c

iu is the numerical solution at each grid 

point i.  
We investigate the error of 

1L  for both flow depth and velocity. We 

therefore refer to Equation (27) to calculate the error of numerical 
computations. For the investigations, we use various grid number and run 
the program for large t , then we record the error 

1L . The results are depicted 

in Figure 4. 
 

 
(a) 

 
(b) 

 
(c) 

 

(d) 

Figure 3. The visualization of fluid flow on bumps topography when time goes to 
large value. 

Figure 4(a) displays the profile of error 
1L  of the flow depth and 

velocity for 201=N . Observe that starting from sec20=t , the error 
1L  is 

almost constant and do not exceed a specific constant K. Thus, it satisfies the 
inequality (28). We also display the profile error 

1L for 301=N , 401=N , and 
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501=N  in Figure 4(b), 4(c), and 4(d), respectively. The three cases also 
satisfy inequality (28). 

KuuLim
N

i

c

i

e

iN
t

− =→ 1

1   (28) 

 
Figure 4. A Graph of error L1 versus times t for some grid numbers  

 
Since the error 

1L  is bounded, the Lax-Friedrichs scheme for the SWE is 

numerically stable. Further, when this scheme is applied to visualize the fluid 
flow for a longer time, then we guarantee that this scheme can run well, i.e., 
the error does not exceed some constant K. This shows that the Lax-
Friedrichs scheme for SWE is numericaly stable. 

Figure 5 shows the relationships of norm error 
1L  toward the 

variations of grid numbers for flow depth and velocity. The investigations are 
carried out for the number of grids from 201=N  up to 601=N . When the 
number of grids is higher, then the error of 

1L  for flow depth and velocity 

become higher too. However, the propagation of the error is very small and 
tends to be constant. Thus, the Lax-Friedrichs scheme for SWE is numerically 
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stable. Since we have shown that the method is consistent, the Lax-Friedrichs 
scheme for the SWE fluid flow problem on environment of dam-break flow is 
convergent.  

 

Figure 5. A graph of error L1 versus number of grids  

 
6. CONCLUSION 

According to the results, we conclude that the algorithm for 
visualization of shallow water dam-break flow is as follows. 

1. In each time step, the number of works done by the algorithm based 
on Lax-Friedrichs scheme is of order )(NO . 

2. The Lax-Friedrichs scheme for SWE in dam-break flow is consistent 
and conditionally stable. If the stability condition is satisfied, the 
algorithm is convergent. 

3. According to the visualization result:  
- in the steady state case, the numerical solution is suitable with the 

analytical solution.  
- In the case of flat topography, starting from sec20=t , the error   

is almost constant and do not exceed a specific constant K.  
Hence, the algorithm is suitable for game applications with the environment 
containing flat and flat with bumps topography. 
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