
EMITTER International Journal of Engineering Technology
ISSN: 2443-1168, Vol. 8, No. 1, June 2020, pp. 49~66

DOI : 10.24003/emitter.v8i1.468

Copyright © 2020 EMITTER International Journal of Engineering Technology ‐ Published by EEPIS

49

Towards a Resilient Server with an External VMI in the
Virtualization Environment

Agus Priyo Utomo, Idris Winarno, Iwan Syarif

Departement of Information and Computer Engineering,
Politeknik Elektronika Negeri Surabaya

Jl. Raya ITS Sukolilo Surabaya 60111, Indonesia
E-mail: agusp@poliwangi.ac.id, {idris, iwanarif}@pens.ac.id

Received December 31, 2019; Revised May 3, 2020; Accepted May 25, 2020

Abstract

Currently, cloud computing technology is implemented by many
industries in the world. This technology is very promising due to
many companies only need to provide relatively smaller capital for
their IT infrastructure. Virtualization is the core of cloud computing
technology. Virtualization allows one physical machine to runs
multiple operating systems. As a result, they do not need a lot of
physical infrastructures (servers). However, the existence of
virtualization could not guarantee that system failures in the guest
operating system can be avoided. In this paper, we discuss the
monitoring of hangs in the guest operating system in a virtualized
environment without installing a monitoring agent in the guest
operating system. There are a number of forensic applications that
are useful for analyzing memory, CPU, and I/O, and one of it is called
as LibVMI. Drakvuf, black-box binary analysis system, utilizes LibVMI
to secure the guest OS. We use the LibVMI library through Drakvuf
plugins to monitor processes running on the guest operating system.
Therefore, we create a new plugin to Drakvuf to detect Hangs on the
guest operating system running on the Xen Hypervisor. The
experiment reveals that our application is able to monitor the guest
operating system in real-time. However, Extended Page Table (EPT)
violations occur during the monitoring process. Consequently, we
need to activate the altp2m feature on Xen Hypervisor by minimizing
EPT violations.

Keywords: Virtualization, Virtual Machines Introspection, out-VMI,
Hang Detection, Cloud Computing.

1. INTRODUCTION
Information technology is growing very fast so that new technologies

are rapidly replacing current projections. One of them as cloud computing
technology, which offers easy access, efficiency, and scalability of network
resources. As a result, cloud computing has made many industries migrating

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

50

their IT infrastructure to it. Cloud computing is also able to change the
lifestyles of the world community, many of which they associate with
technology (e.g., IoT), and even they also visualize it in the form of mobile
applications. Simply by using a computer or mobile phone, they can do many
things such as reading news, teaching and learning activities, buying and
selling transactions, turning off remote lights, and even they are able to
control the growth of crops in the agricultural sector (e.g. agrotechnology). In
2021, it is estimated that the data stored in the data center will reach 1.3 ZB,
up 4.6 times from the previous 286 EB in 2016, this is a finding of the Cisco
Global Mobile Data Traffic Forecast (2016 to 2021) [1]. With more and more
people and objects connected to each other, we need a connecting medium
called an information system. There are some components in information
system and one of the essential parts called computer server. Therefore, the
availability of the servers is very important to avoid companies from revenue
loss when access to data resources and business applications is hampered
[2]. Building a server can be done with a traditional model and can also use a
virtualization model. Traditional server architecture is different from
virtualization server architecture as shown in Figure 1.

Traditional servers are also known as bare-metal servers. Each
traditional server consists of physical devices in the form of memory,
processor, I/O, network connection, hard drive, and operating system (OS) to
run programs and applications. The OS works directly on physical devices
that depend entirely on the availability of supporting hardware resources.
Unlike virtualization servers, this operates in a "multi-tenant" environment,
which means that multiple virtual machines (VMs) runs on the same physical
hardware. In this case, the computing resources of the physical server are
virtualized and shared among all the VMs that run it. The virtualization
server architecture is a bit more complicated than a physical server. This
requires a hypervisor, which is used to create and manage VMs, which have
their own virtual computing resources. Furthermore, we can create several
guest OS and application servers on top of virtual hardware.

Figure 1. Traditional Architecture vs Virtualization Architecture

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

51

The hypervisor is divided into two types, namely Bare Metal (Native)
and Hosted. Native hypervisor type runs concurrently with server hardware,
so it has direct access rights to the hardware without having to pass another
operating system. That is, it does not require another operating system to run
this type of Hypervisor (e.g., VMware ESXi, Xen Server). Hosted hypervisor
type acts as software that is useful for running and managing virtual
machines, so to get access to the hardware must pass through the operating
system (e.g., Proxmox, VirtualBox, Xen Hypervisor, KVM Hypervisor). Thus,
server virtualization makes it possible to run multiple OS and applications
based on shared physical hardware, which makes it a cost-effective choice for
building servers rather than traditional servers [21].

The impact is that many traditional server users switch to virtualization
servers, this is due to the many tangible benefits offered by the virtualization
model including ease of use and scalability [3]. The Cisco Global Cloud Index
estimates [1] that, in 2021, the ongoing transition from workloads and
calculation of traditional data center instances to cloud data centers is 94%,
as shown in Figure 2.

Figure 2. Workload and compute instance distribution [1]

However, shifting the infrastructure from traditional servers to
virtualization does not guarantee that the server will avoid potential failures
or other new threats. Consequently, the more new features or services will
deliver, more potential failures that occur such as Hang (system failure),
Denial of Service (DoS), and Malware (Hidden Rootkit) [4][5]. Virtual
Machine Introspection (VMI) is a solution that can be used to solve the
problems that occur in virtual machines and create a resilient computing
ecosystem.

2. RELATED WORKS

The VMI concept was first introduced by Garfinkel and Rosenblum in
2003 [6]. Then according to Zhao et al. [7] this technique is distinguished
according to how it works namely in-VMI is a monitoring technique from
within the guest OS, the detection application acts as an agent that can be run

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

52

manually or as a service on the operating system, whose task is to monitor
the system that is running on the guest OS. And out-VMI is a guest OS
monitoring technique without installing an application (agent) inside the
guest OS. The more guest OS running on the host OS, the more efficient this
method is. Many different VMI techniques have been developed in the last
few years, starting with the introduction of the semantic gap problem. It can
be concluded that in the case of developing computational security, the use of
VMI has received a serious response [6][8].

In the operating system, there is a paging mechanism, one of which is
Second Level Address Translation (SLAT). SLAT serves to bridge the virtual
address of the guest OS with physical memory, and SLAT is also referred to as
an additional layer that mappings the address from the guest OS to physical
memory. This technology was initiated by Intel since the Core i3 processor
until now under the codename Nehalem. Then AMD introduced the same
technology since the third-generation Opteron under the name Rapid
Virtualization Indexing (RVI) technology. At present, both Intel Virtualization
Technology (VT-x) and AMD Secure Virtual Machine (SVM) have utilized
SLAT technology for virtualization needs, which later on Intel processors
known as Extended Page Tables (EPT) which are used for Memory
Management Units (MMU) [9].

In the virtualization mechanism, EPT mapping Guest Virtual Address
(GVA) to be used on the Guest Physical Address (GPA) in the main memory.
Each guest OS has a one-page table that is managed by a Virtual Machine
Monitor (VMM) to produce physical addresses and other page tables, and this
aims to translate the guest OS physical address to the host OS physical
address. This process aims to ensure that each memory access operation on
the MMU EPT automatically gets the host OS physical address from the
results of the mapping performed by VMM. For introspection in a virtual
machine, there are several important steps that must be taken. The first step
to analyzing something is to collect data/evidence. Data or evidence
collection starts with something that is easily changed (e.g., Random Access
Memory (RAM)). Data that is in the computer RAM will be lost when the
computer has restarted or shutdown.

Therefore, it is important to really pay attention when the server
computer is indicated a security incident is not to shutdown or restart the
server, which may still hold valuable evidence. RAM itself is just a series of
zeros and ones, with no semantic context at all. However, computer
programs need to adjust this RAM so they can store meaningful data. For
example, in the C programming language, a programmer can define a struct
that determines how variables are placed in RAM. We take advantage of the
unique Rekall approach to memory analysis, one of which is utilizing the
appropriate debugging information provided by the operating system to
precisely find significant kernel data structures. Currently, Rekall also
provides cross-platform solutions, including Windows, Mac OSX, and Linux.

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

53

Some research on the introspection of virtual machines has been done
by several researchers before. Pham et al. [4] introduced reliability and
security (RnS) in the HyperTap framework to support monitoring in
virtualization environments, especially kernel-based virtual machines (KVM).
Researchers introduce three examples of monitoring, one of which is Guest
OS Hang Detection (GOSHD). The researcher assumes that when the CR3
register is disappear in a span fewer than 10 minutes and appears again then
the guest OS can be said to be in a partial hang condition. Winarno et al. [10]
evaluate the performance of in-VMI virtualization servers by developing
agents as an in-VMI application and referred to as the Self-Repair Network
(SRN) manager. Three failure scenarios are tested, one of which is hang. To
detect hang, they use the heartbeat probes method. Lengyel et al. [11] build a
malware analysis system that dynamically runs on virtualization (Drakvuf).
The Drakvuf monitoring system is able to monitor rootkits in kernel-mode on
the guest OS. Drakvuf works on the host OS to monitor guest OS by utilizing
memory access using LibVMI, functioning as a malware detection system at
the guest OS kernel level.

3. ORIGINALITY

In this work, we discuss the Hang detection system (system failure) on
the guest OS. We focus on the out-VMI method, we focus on this because in
the cloud business world it is impossible for providers to interfere to a guest
OS that has been leased without having access rights to log in. However, the
out-VMI method is able to provide solutions to problems of access rights,
meaning that out-VMI can monitor many guest OSes running on Virtual
Machines without interference the guest OS. In contrast to existing research,
they developed a hang detection system on the Kernel-Based Virtual Machine
(KVM) [4], and a malware detection system on Xen Hypervisor-based
virtualization [11]. In our previous study [12], we developed a hang detection
system on the Xen Hypervisor, and have successfully read the Control
Register (CR3) of each process running on the guest OS as an indicator that
the guest OS is running normally. The CR3 register is part of a memory
register that can translate linear addresses into physical addresses when
virtual addressing is activated. We use the CR3 register to find out all the
Process ID (PID) that are running at the Operating System level in the guest
OS. Furthermore, we continue our work to detect the partial hangs of the
applications that run under the Hypervisor.

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

54

Table 1. Comparison of differences with existing research
Existing

Study
Engine CR3 Malware Partial

Hang
Full

Hang
eVMI iVMI Framework

Pham et al,
2014 [4]

KVM √ √ √ √ √ HyperTap

Lengyel et
al,
2014[11]

XEN √ √ √ LibVMI

Winarno et
al, 2018
[10]

XEN,
KVM

 √ √ √ SRN

Utomo et
al, 2020

XEN √ √ √ LibVMI

4. SYSTEM DESIGN
This study aims to detect a partial hang on the guest OS running on a

virtual machine based on Xen Hypervisor. We propose the use of the out-VMI
method. In order, to get optimal results, it requires several steps starting
from getting debug information for the guest OS kernel to the process of
detecting a partial Hang on the guest OS.

Figure 3. Out-VMI Architecture

When the guest OS in a virtualized environment experiences problems

in the middle of the process, the guest OS condition will never be known by
the system administrator. Failures that occur in the guest OS can be caused
by failures in the hardware (e.g. network connection problem) or logic
failures (e.g. software bugs). Therefore, several guest OS monitoring
applications appear on the hypervisor. However, it requires the installation
of additional applications to the guest OS to send information about the
failures that occur on the guest OS. When using the out-VMI method to
monitor guest OS conditions, it is not necessary to install additional
applications since the monitoring process is done from the outside of guest
OS as shown in Figure 3.

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

55

Figure 4. System Design Hang Detection

We developed an external virtual machine introspection (VMI)
application that runs on the host OS to detect system failures (e.g., Hang) on
the guest OS. The external VMI detects the system failures by reading the CR3
register that indicates the process is running or not at the memory level. That
is, the kernel scheduler does not forward PIDs that are running at the OS
level to the next process that is processed at the memory level as shown in
Figure 4.

4.1 System Map
In order to run LibVMI and read processes in memory, it requires a

kernel symbol from each guest OS to monitor, and this is called a System Map.
On a guest OS that uses Windows, a system map can be obtained by
translating the kernel symbol (e.g., Ntoskrnl.exe). Furthermore, to get
debugging information from the kernel, we need to provide a Globally Unique
Identifier (GUID) and Database Program (PDB). In Windows guest OS, we
could get the kernel to debug the information (e.g., GUID, PDB code) via the
vmi-win-guid tool, which is part of LibVMI. Further, creates a debugging
information request addressed to the Microsoft site, based on the GUID and
PDB code that has been obtained using the Rekall application [18]. When the
debugging information has been downloaded successfully, we do the
conversion into a JSON file format, as shown in Figure 5.

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

56

However, on a guest OS based on Linux, the process to get the System
Map occurs a bit difference. Debugging information is obtained directly from
the guest OS itself by using the Rekall application. Afterward, the debug
information file obtained from extracting the guest OS kernel and transferred
to the host OS using a data transfer application (e.g., Secure Copy Protocol
(SCP)). Furthermore, on the host OS, we convert the debug information that
has been obtained from the guest OS into the JSON format using the Rekall
application, as shown in Figure 6. The resulting conversion file is also
referred to as the Rekall Profile.

Figure 5. The process of getting a System map on Windows

Figure 6. The process of getting a System Map on Linux

4.2 Monitoring

The virtual machine introspection library, known as LibVMI [11], is an
additional project of XenAccess. LibVMI is integrated to a memory forensic in
order to provide a simpler software so that it makes easier to support virtual
machine introspection. This accesses memory using physical or virtual
addresses and kernel symbols, kernel symbols obtained from the guest OS
kernel data that are translated into files in the JSON format, as shown in
Figure 7a. Therefore, LibVMI can provide access to physical memory for each
Windows and Linux operating system by using the guest OS kernel symbol, as
shown in Figure 7b. The diagram of the memory access process on this

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

57

virtual machine is shown in Figure 7. In addition to access the memory,
LibVMI also supports access to memory events. LibVMI able to provides a
notification of the list of processes that are being run, written, or read when
the memory event on the virtual machine is accessed. Memory events require
Hypervisor support, which is currently available on XEN and KVM.

Figure 7. Kernel translation process diagram on VMI

As shown in Figures 5 and 6, to read the CR3 register, it is necessary to

translate the kernel symbol into a virtual address. LibVMI requires a System
Map of the Guest OS that is associated with the Host OS kernel in order to
complete the process. If the System Map file is unavailable, the guest OS
monitoring process will fail [13]. The System Map is basically a symbol table
and the guest OS kernel address, as shown in Figure 4. The process of
scanning a System Map will be carried out continuously by LibVMI until the
intended symbol is found. We use LibVMI as a solution that can provide
access to the guest OS virtual memory and to read the guest OS virtual
address page table, which is basically generated by the guest OS kernel. In
every running process, the location of the page directory can change.
Therefore, LibVMI scans the kernel task list to find the process page directory
based on the given process ID. After finding a match, the page directory will
get the process struct, which is in the guest OS virtual memory.

Each PID at the guest OS has a CR3 register at the memory level. This is
generated by the kernel scheduler when sending process signals to be
executed in memory. We utilize the signal to simulate a partial hang, as
shown in algorithm 1.

4.3 Hang Simulation

In the Linux operating system, the kernel has several levels of page
tables. The top-level is the global page directory, and each process has a
directory page. Thus each process can have a unique table mapping. Because
the kernel manages the scheduling process, it can track changes in the page
table, and update the CPU status needed to switch to the new process page

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

58

table when changing tasks. In the x86 architecture, page directories and page
tables together provide a mapping between virtual addresses (memory
addresses used by applications) and physical addresses (actual locations in
physical memory hardware). When the user runs the process, the CR3 CPU
register stores the physical address of the process page table, because each
process has a page table, each process will also have a unique CR3 value from
every other scheduled process.

Figure 8. Paging in x86 architecture processor

In a healthy guest OS, every normal process always produce a CR3
register at the memory level. This means that the process IDs running at the
OS level will be written continuously at the CR3 register by the process
switch. Furthermore, each process in the guest OS has a unique page table.
Then each running process will be scheduled by the switch to be processed at
the memory level so that every normal process at the OS level will always
generate a CR3 code at the memory level. Therefore, when the CR3 register is
not written for a period of time (e.g., 10 minutes) by a particular process
then, the guest OS can be considered to be in a hang condition. We use the
LibVMI library to make it easy to read the CR3 registers for each guest OS in
memory. Several studies have conducted approaches to hang detection on
virtual machines (e.g., fault injection) [4][14].

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

59

Figure 9. Process cycle in the operating system

In general, Unix-like systems do not have a mechanism to delay the
process and then continue. However, this can be manipulated by using the
kill application with the SIGSTOP signal [15]. SIGSTOP signal is used to hold
or delay the process so that the process switch does not schedule a signal to
the page directory. As shown in Figure 9, when this SIGSTOP signal is sent to
the process switch, the kernel will actually delay the process from the
application (e.g., Apache2). The application process will remain in a waiting
state until a SIGCONT signal is sent to be able to run the application process,
although the process ID at the OS remains in the running status. However, at
the scheduler, this process is suspended. Therefore, we use SIGSTOP to hold
the Apache2 process signal from being sent to the process switch. As a result,
the CR3 code of the Apache2 services is not written on the CR3 register.

5. EXPERIMENT AND ANALISYS

In this section, we will describe the results of a system failure detection
(hang) experiment that occurred on a guest OS, the impact that occurs when
the CR3 register reads at the memory level, and the solution to the impact
that occurs. To support this experiment, our computer uses Debian GNU
Linux 9.6. We compile Xen Hypervisor v4.11 as Hypervisor for its
virtualization (Host OS). It runs on physical computer as a server with
technical specification as follows:

• Intel (R) Xeon (R) CPU specifications E5-2630 v4 @ 2.20GHz
• 16GiB RAM
• 1TiB HDD
For guest OS, we use Ubuntu 16.04 and allocate 2 vCPU, 1GiB RAM, and

20GiB virtual hard disk.

5.1 Partial Hang Detection
As explained in section 4, especially on subsection 4.3, every process

running at the OS level has a process ID. That is, all process IDs running on

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

60

the OS print the CR3 register code continuously at the memory level. In this
experiment, we ran a web server application service (Apache2) and ran a
benchmark application (e.g., UnixBench, stress-ng). The benchmark
application is used to force the guest OS to use all of its vCPU resources.
Meanwhile, we monitor memory levels by reading guest OS system calls via
the host OS. We focus our attention on the Apache2 process (PID) running on
the guest OS, and CR3 attached to the service. As a result, monitoring the
processes running on the guest OS will be much easier since we do not need
any application to the Guest OS. Before performing a partial hang test, we
first monitor the memory level to ensure that the CR3 running the Apache2
process has been monitored from the host OS as shown in Figure 10.

Figure 10. System monitoring produce CR3 for Apache2

Figure 11. System monitoring not produce CR3 for Apache2

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

61

However, when we instructed that the Apache2 signal enters the
waiting room with SIGSTOP, the CR3 monitoring system from the Apache2
process is no longer printed at the memory level as shown in Figure 11.
According to [4], when CR3 of the application or service is not printed on a
monitoring system at the memory level for a specified time, it means that the
guest OS is in partially hang condition.

Algorithm 1 Pseudo-code implementation partial hang detection

array proclist[1..n]
partialTime = 299
while true do
 result = getSignal()
 if (result) then
 procName = result.procName
 time = result.time
 proclist[procName]=time
 end if
 for key in proclist
 haveData = true
 result = getProcList()
 for item in result do
 if (item == key) then
 break;
 else
 haveData = false
 end if
 end for
 if (haveData == false) then
 remove proclist[key]
 else
 timeDelay = Time.Now() - proclist[procName]
 if (timeDelay > partialTime) then
 Print "Partial hang..."
 end if
 end if
 end for
end while

In implementing a partial hang detection system, we use an algorithm

as shown in algorithm 1. Our system reads and checks the processed signal
from the guest OS based on the CR3 register that appears, then establishes it
as a list of processes. After completing registering the process that sent the
signal, we then retrieve a list of processes from the guest OS task manager.
We do a check between the CR3 registers generated and the list of processes
that have been collected previously, if the name of the process is available in
the process list it will be ignored. However, if the list of processes does not
exist, we delete the list of processes that do not exist in the guest OS process.
We also check the length of time the process register does not have a CR3

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

62

register. We set a maximum limit of 10 minutes for each process that does
not have a CR3 register, as an indicator determining the partial hang.

5.2 EPT Violation

After we successfully indicated there was a partial hang on the Apache2
application. A new problem arises when we read the process in memory. The
workload of the guest vCPU OS moves partially to the host vCPU OS. This
situation known as EPT violation.

Figure 12. Monitoring the guest OS vCPU usage

EPT violation is detected when we monitor vCPU workloads using

monitoring tools (e.g,, Xentop) [20]. The monitoring process is started before
reading the memory until resuming the SIGSTOP process performed on
Apache2. As shown in Figure 12, the percentage of vCPU usage in the guest
OS before reading memory with the guest OS status running the benchmark
application reaches 199.9%; this is shown in the yellow rectangle. Moreover,
the blue rectangle shows the percentage of use of host OS vCPU with the load
running dom0 and one domU (guest OS) by 3.0%.

However, when we monitored memory, the percentage of vCPU usage
on the guest OS dropped dramatically to 0.5%. It can be seen in the green
rectangle in Figure 13; the use of host OS vCPU has increased to 105.3%.
There is a shift of workload from the guest OS to the host OS, and this is
called EPT Violation [4].

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

63

Figure 13. EPT Violation

5.3 Xen Alternate p2m

Altp2m is a Xen subsystem and stands for alternative guest physical
memory to machine physical [19]. The term p2m refers to the second level
address translation table, which translates the physical guest address (p) into
a physical host or in the Xen jargon machine address (m). Usually, there is
one p2m table per guest domain that is managed by Xen. This has been
changed with an alternative p2m table. On x86 or more precisely on modern
Intel architecture, p2m tables can be considered as EPT tables represented
by Extended Page Table Pointers (EPTP) in data structures that are
determined by the Virtual Machine Control Structure (VMCS) hardware. The
altp2m system can define multiple page tables for each guest OS that allows
synchronization between vCPUs. Therefore, it can minimize EPT violations in
the Hypervisor. Since the Haswell CPU generation, Intel's VMCS has been able
to maintain 512 EPTPs. We try to use altp2m on Xen 4.12.1 version as shown
in Figure 14.

Figure 14. Prosentase vCPU with alt2pm

As a result, when monitoring EPT violations can be minimized.
Previously the percentage of vCPU Host OS reached 105.3% as shown in
Figure 12. However, since using altp2m it has become 24.0% with the same
testing load as shown in Table 2.

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

64

Table 2. System Experiment result

Domain
Percentage vCPU

Before monitoring During monitoring With altp2m
Host OS 3.0% 105.3% 24.0%
Guest OS 199.9% 0.5% 175.8%

6. CONCLUSION

This paper presents monitoring and detection of partial hangs in a
hypervisor-based virtualization environment (e.g. Xen) with a virtual
machine introspection (VMI) method that is more specific to out-VMI. Our
proposed system is able to monitor multiple guest OSes without installing
additional applications (agentless). We conducted a simulation for the Hang
experiment using a SIGSTOP signal for 10 minutes. As a result, the SIGSTOP
signal gives the scheduler instructions to pause the Apache2 application
process so as not to forward it to the memory level, and the Apache2 PID is
still running at the operating system level. We conclude that our experiment
was able to detect a partial Hang on the guest OS. However, when LibVMI
monitors the CR3 register, a process shift from the guest OS to the host OS
occurs, known as a violation of the EPT. Therefore, we are trying to update to
a newer version of Xen. Alternate p2m (altp2m) is able to minimize the
occurrence of EPT violations when monitoring memory. We will try to
improve our work by adding a self-action model to respond to failures that
occur on the guest OS (e.g. Hang) in the future. One of the self-action models
is called the Self-Repair Network model [17]. Moreover, the failures not only
addresses hang but also other failures such as Malware and Denial of Service
(DoS).

Acknowledgements

The author would like to thank the Ministry of Research, Technology
and Higher Education, Directorate General of Science, Technology, and
Higher Education Resources for their support through the 2018 PTNB
Affirmation Scholarship Program.

REFERENCES
[1] Cisco Systems, “Cisco Global Cloud Index: Forecast and

Methodology, 2016–2021,” Cisco System. Inc, p. 46, 2018.
[2] A. T. Mizrak, P. Saxena, VMware vCenter Server High Availability

Performance and Best Practices. VMware Inc, 2016.
[3] O. Nagesh, T. Kumar, and V. Venkateswararao, “A survey on security

aspects of server virtualization in cloud computing,” Int. J. Electr.
Comput. Eng., vol. 7, no. 3, pp. 1326–1336, 2017.

[4] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. K. Iyer, Reliability
and security monitoring of virtual machines using hardware
architectural invariants, Proceedings of the 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN,

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

65

vol. 2014, pp. 13–24, 2014.
[5] T. Y. Win, H. Tianfield, Q. Mair, T. Al Said, and O. F. Rana, Virtual

machine introspection, ACM Int. Conf. Proceeding Ser., vol. 2014-
Septe, pp. 405–410, 2014.

[6] T. Garfinkel and M. Rosenblum, A Virtual Machine Introspection
Based Architecture for Intrusion Detection, Proceedings of Network
and Distributed Systems Security Symposium, vol. 1, pp. 253–285, 2003.

[7] S. Zhao, X. Ding, W. Xu, and D. Gu, Seeing Through The Same Lens:
Introspecting Guest Address Space At Native Speed, Proceedings of
the 26th USENIX Security Symposium, pp. 799-813, 2017.

[8] L. Jia, M. Zhu, and B. Tu, T-VMI: Trusted Virtual Machine
Introspection in Cloud Environments, Proceeding of 17th IEEE/ACM
Int. Symp. Clust. Cloud Grid Comput. CCGRID 2017, pp. 478–487, 2017.

[9] VMware, Performance Evaluation of Intel EPT Hardware Assist,
Management, vol. 136362, pp. 1–14, 2009.

[10] I. Winarno, Y. Ishida, and T. Okamoto, A Performance Evaluation of
Resilient Server with a Self-Repair Network Model, Mobile
Networks and Applications, pp. 1095-1103, 2018.

[11] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A.
Kiayias, Scalability, fidelity and stealth in the DRAKVUF dynamic
malware analysis system, Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC 2014, pp. 386–395, 2014.

[12] A. P. Utomo, I. Winarno, I. Syarif, Detecting Hang on the Virtual
Machine using LibVMI, 2019 International Electronics Symposium
(IES), Surabaya, pp. 618–621, 2019.

[13] M. A. A. Kumara and C. D. Jaidhar, Execution time measurement of
virtual machine volatile artifacts analyzers, Proceedings of the
International Conference on Parallel and Distributed Systems - ICPADS,
vol. 2016-January, pp. 314–319, 2016.

[14] B. Teabe, V. Nitu, A. Tchana, and D. Hagimont, The lock holder and the
lock waiter pre-emption problems: Nip them in the bud using
informed spinlocks (I-Spinlock), Proceeding of 12th Eur. Conf.
Comput. Syst. EuroSys 2017, pp. 286–297, 2017.

[15] Philip Carinhas, Linux Fundamentals - A Training Manual, Fortuitous
Technologies Inc, 2001.

[16] Intel Corporation, Intel® 64 and IA-32 Architectures Software
Developer Manuals, vol 3C, 2016.

[17] Y. Ishida, Self-Repair Networks - A Mechanism Design, Springer
(Switzerland), volume 101, 2015.

[18] M. Cohen, Scanning Memory with Yara, Digital Investigation, volume
20, 2017.

[19] S. Proskurin, T. Lengyel, M. Momeu, C. Eckert, and A. Zarras, Hiding in
the shadows: Empowering arm for stealthy virtual machine
introspection, Proceeding of ACM International Conference, pp. 407-
417, 2018.

Volume 8, No. 1, June 2020

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

66

[20] N. Smyth, Xen Virtualization Essentials, Payload Media, Ed. 1, pp.
124-125, 2009.

[21] I. Winarno, M. Sani, Automatic Backup System for Virtualization
Environment, EMITTER International Journal of Engineering
Technology, vol. 2, pp. 91-101, 2014.

