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Abstract 

 

Particle Swarm Optimization (PSO) has demonstrated great 

performance in various optimization problems.  However, PSO has 

weaknesses, namely premature convergence and easy to get stuck or 

fall into local optima for complex multimodal problems. One of the 

causes of these weaknesses is unbalance between exploration and 

exploitation ability in PSO.  This paper proposes a Modified Particle 

Swarm Optimization (MPSO) using nonlinearly decreased inertia 

weight called MPSO-NDW to improve the balance.  The key idea of 

the proposed method is to control the period and decreasing rate of 

exploration-exploitation ability. The investigation with three famous 

benchmark functions shows that the accuracy, success rate, and 

convergence speed of the proposed MPSO-NDW is better than the 

common used PSO with linearly decreased inertia weight or called 

PSO-LDW   

  

Keywords: particle swarm optimization (PSO), premature 

convergence, local optima, exploration ability, exploitation ability. 
  

 

1. INTRODUCTION 

The difficulties associated with using mathematical optimization on 

large-scale complex engineering problem have contributed to the 

development of alternative solution.  To overcome these problems, 

researchers proposed evolutionary-based algorithm for searching near-

optimum solutions to problems.  Evolutionary algorithms are stochastic 

search methods that mimic the metaphor of natural biological evolution 

and/or the social behavior or species.  To mimic the efficient behavior of 

these species, various researchers have developed computational systems 

that seek fast and robust solutions to complex optimization problems. 
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Particle Swarm Optimization (PSO) is one of the evolutionary computational 

technique developed by Kennedy and Eberhart in 1995 [1].  It is a 

population-based stochastic search algorithm inspired by the simulation of 

the behavior of the birds flocking or fish schooling.  The basic idea of PSO 

comes from the research of the behavior for the bird swarm to catch food.  

PSO has shown good performance in finding good solution to optimization 

problems, and turned out to be another powerful tool besides other 

evolutionary algorithm such as Genetic Algorithm (GA) [2], [3].  Compared 

with genetic algorithm and ant algorithm, PSO has simple algorithm or form, 

faster convergence, efficient in time-calculation and is easily implemented as 

well as the adjustable parameters are few, so PSO is adept to solving many 

non-derivative and multi-peak complex optimization problems.  PSO has 

been successfully applied to many science and practical fields [4]-[7].    

Although PSO has superior features, it has some problems, such as 

premature convergence and fall into local optima [2], [8].  It was reported 

that the causes of the problem are unbalance between exploration-

exploitation ability and lost-diversity or lack-information due to fast rate 

flow in sharing information.  Exploration ability or global search ability is the 

ability to identify a region with a best solution.  Particles with strong 

exploration ability have a high speed velocity to search in a wider area.  

Exploitation ability or local search ability is the ability to find a best solution 

in a targeted area or limited area.  Particles with strong exploitation ability 

have low speed velocity to refine and capture a best solution.  If the particles 

are far from a best solution, strong exploration ability is better. If the 

particles are close to a best solution, strong exploitation ability is better.  Due 

to random process and particle’s movement, the position of particles is 

always changed in each iteration.  So, the control of both abilities in order to 

get a proper balance is needed. In previous method called PSO using linearly 

decreased inertia weight (PSO-LDW) [9], inertia weight adjustment was used 

to control these abilities. In the first iteration, inertia weight is set in 

maximum value, and then it is linearly decreased until minimum value at the 

end iteration.  Although, PSO-LDW is better than PSO using constant inertia 

weight, sometimes it suffers from the problem of being trapped in local 

optima and premature convergence. 

In this paper, the PSO-LDW is revised with a nonlinearly decreased 

inertia weight, proposed to efficiently control the period and decreasing rate 

of exploration-exploitation ability.  A new parameter called nonlinear index 

number is added to control the path of inertia weight.  The proposed MPSO-

NDW was verified on three benchmark functions and the results were 

compared with the original PSO-LDW.   

The rest of the paper is organized as follows.  In section 2, the original 

PSO is introduced.  In section 3, the modified PSO with nonlinearly decreased 

inertia weight is proposed.  In section 4, experiments on several benchmark 

functions are done to test our proposed method, then we compare it with the 
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original PSO, and the simulation result is analysed. Finally, section 5 

concludes with a summary. 

 

 

2. PARTICLE SWARM OPTIMIZATION ALGORITHM 

PSO is a population-based optimization method using the concept of 

cooperation inspired by the behavior of organism, such as birds flocking or 

fish schooling, in search for food [1].   The outline for PSO is marked as 

follows. Let consider the optimization problem of maximizing the evaluation 

function f : M→M'⊂R for variable x∈M⊂Rn . Let there be N particles (mass 

point) on M dimensional space, where the position vector and velocity vector 

of i(= 1,2,3,....,N)th particle for m searching number are��� and ��� . The best 

position for each particle in the evaluation function f(x) of   searching point is 

represented as Pbi (Pbest), while the best position of f(x) in the searching 

point for the whole particle is represented as gb (gbest). The particles are 

manipulated according to the following recurrence equations: 

����� = � ∙ ��� + �� ∙ �� ∙ 
��� − ���� + �� ∙ �� ∙ 
��� − ����         (1) 

����� = ��� + �����              (2) 

� = ���� − 
���� − ����� ∙ �
����

              (3) 

wherew is the inertia weight; c1 and c2 are cognitive and social constant; r1 

and r2 are random numbers.  There are three parts or vectors that affect the 

particle’s movement, i.e., momentum vector, (w.v), cognitive vector, (Pb – x), 

and social vector, (gb –x).  According to Eq. (1) and Eq. (2), the particle’s 

movement in PSO can be illustrated in Fig. 1.  The next position of particle is 

the resultant of three vectors.    

 
 

Figure 1.  Particle’s movement in PSO 

 

The working mechanism of PSO algorithm can be described in four 

steps as follows: 
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1. Deploy a population of candidate solution (or particles) in the 

searching-area randomly.  Each particle can handle a candidate 

solution with D-dimension. 

2. Evaluate the fitness value of each particle and set as pbest and gbest.   

3. Update the position and velocity of each particle using Eq. 1 and Eq. 2. 

4. Check the termination condition.  If the condition is not met, return to 

No. 2.  If the condition is met, the process is complete and the optimal 

solution is the particle with gbest.   

 

The flowchart of the PSO algorithm is shown in Fig. 2.   

 
 

Figure 2. The flowchart of PSO 

 

 

3. PROPOSED MODIFIED PSO 

The most important parameter of PSO is inertia weight because of its 

capability to control the balance of exploration-exploitation abilities.    

Recently, research to improve PSO is being conducted intensively.  Improving 

PSO is focused on how to adjust inertia weight in order to get a proper 

balance.  The relationship between inertia weight and ability in PSO is shown 

in Fig. 3.  The range of inertia weight is from 0.1 to 0.9.  The lower inertia 

weight will cause strong exploitation ability (β) and weak exploration ability 

(α).  The higher inertia weight will cause weak exploitation ability and strong 
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exploration ability.  The combination of both abilities is one (α + β = 1).  The 

problem is how to adjust inertia weight in order to get a proper combination 

or balance between exploration-exploitation abilities.  

 

 
Figure 3. Inertia weight and abilities of PSO 

 

 

 
Figure 4. Path of inertia weight 

 

In the original PSO, inertia weight is linearly decreased from maximum 

value to minimum value as shown in Eq. 3.  It is called PSO-LDW [8].  As 

shown in Fig. 4, due to this strategy, the usage period of exploration ability 

(Tα = T3 – T1) is similar with the usage period of exploitation ability (Tβ = T4 – 

T3), or Tα = Tβ.  Also, the decreasing rate of exploration ability (∆�= �������
 !� "

) is 

similar with the increasing rate of exploitation ability (∆#= �����$%
 &' !

), or Δα = Δβ.  

So, there is no controlling of the usage period and changing rate of 

exploration-exploitation abilities in PSO-LDW.  It is a weakness of PSO-LDW.        

In the proposed method, we want to investigate the impact of usage 

period and decreasing or increasing rate of exploration and exploitation 

ability. To control the period and the changing rate, the path of inertia weight 

must be made nonlinear using a nonlinear index number.  It means that 

inertia weight is nonlinearly decreased from maximum value to minimum 

value by the following equation: 

w = ���� + 
���� − ����� ∙ )������
������

*
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wherex is nonlinear index number.  Higher of x will cause the usage period of 

exploration ability is shorter than the usage period of exploitation ability, Tα< 

Tβ, and the decreasing rate of exploration ability is faster than the increasing 

rate of exploitation ability, Δα> 

 

4. EXPERIMENTAL RESULTS 

This section compares the performance of the proposed MPSO-NDW 

with the original or common PSO-LDW discussed in Section 2.  To verify and 

evaluate the efficiency and the effectiveness of the proposed approach we 

have used three widely known benchmark functions with different 

characteristics, i.e., Sphere function (with single optimum solution), 

Rosenbrock’s function (with one local optimum and one global optimum) and 

Griwank’s function (with one global optimum and many local optimums), as 

follows:   

+�
�, -� = 
� − 15�� + 
- − 20��            (5) 
+�
�, -� = 10 ∙ 
�� − -�� + 
1 − ���            (6) 

+1
�, -� = 1 + �2�32
45 − cos	
�� ∙ �:; ) 3√�*           (7) 

The global best solution for the Sphere function is zero which is 

achieved when x = 15 and y = 20; for the Rosenbrock’s function is zero which 

is achieved when x = 1 and y = 1; and for the Griwangk’s function is zero 

which is achieved when x = 0 and y = 0.  

For the purpose of comparison, all the simulation deploy the same 

parameter settings in both of PSO (original PSO-LDW and MPSO-NDW) such 

as the maximum number of iterations, itermax = 20; cognitive constant, c1 = 

1.0; social constant, c2 = 1.0; number of particles, N = 5, maximum inertia 

weight, wmax = 0.9; and minimum inertia weight, wmin = 0.1.  Since PSO is a 

stochastic algorithm that randomly searches the best solution, so for testing 

we have done as much as 100 runs.   

Experimental results of MPSO-NDW using different nonlinear index 

number and PSO-LDW for Sphere function, Rosenbrock function and Griwank 

function averaged over 100 runs are recorded in Table 1-3, respectively.  

MPSO-NWD using x = 1 is similar with PSO-LDW.  By looking at mean error, 

maximum error, minimum error and standard deviation error, it is easy to 

see that MPSO-NDW using x = 1.2 shows a better accuracy than the other 

nonlinear index numbers.  Due to x = 2, the period of exploration ability 

becomes a little shorter and the period of exploitation ability becomes a little 

longer.  Also, the decreasing rate of exploration ability becomes a little faster 

and the decreasing rate of exploitation ability becomes a little slower.  Since 

Rosenbrock function has a little difference between global optima and local 

optima, the particles in both PSO-LDW and MPSO-NDW having difficulty in 

finding a best solution.  Accordingly, the results aren’t accurate.  From these 

Tables, it is clearly obvious that a proper controlling of the period and 

decreasing rate of exploration-exploitation ability gives a good impact for 

increasing accuracy.   
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Table 1.  Statistical analysis of MPSO-NDW and  

PSO-LDW for Sphere function 

Methods Mean 
error 

Max error Min 
error 

Std 
error 

PSO-LDW 0.8786 22.7055 0 3.8032 
MPSO-NDW x = 1 0.8786 22.7055 0 3.8032 

x = 1.2 0.3186 10.7007 0 1.4781 
x = 1.5 1.4108 87.096 0 8.9412 
x = 2 3.0093 43.0417 0 8.7923 
x = 5 20.062 124.726 0 27.788 
x = 8 47.332 159.786 0.0001 42.401 

 

 
Table 2.  Statistical analysis of MPSO-NDW and  

PSO-LDW for Rosenbrock function 
Methods Mean 

error 
Max 
error 

Min 
error 

Std 
error 

PSO-LDW 6.3063 139.355 0.0013 16.279 
MPSO-NDW x = 1 6.3063 139.355 0.0013 16.279 

x = 1.2 4.1851 20.734 0.0004 5.4643 
x = 1.5 6.7757 114.82 0.0008 13.838 
x = 2 11.861 275.59 0.0008 39.862 
x = 5 36.151 331.05 0 53.289 
x = 8 41.129 932.93 0.0012 124.01 

 

 
Table 3.  Statistical analysis of MPSO-NDW and  

PSO-LDW for Griwank function 

Methods Mean 
error 

Max 
error 

Min 
error 

Std 
error 

PSO-LDW 0.2628 2.5566 3.67e-6 0.4152 
MPSO-NDW x = 1 0.2628 2.5566 3.67e-6 0.4152 

x = 1.2 0.1837 0.9408 3.91e-6 0.3117 
x = 1.5 0.3401 1.8014 2.24e-7 0.4012 
x = 2 0.4002 2.7190 1.42e-7 0.5103 
x = 5 0.7477 2.7185 5.42e-9 0.7417 
x = 8 0.9926 2.7213 1.38e-6 0.8847 
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Figure 5. Convergence speed of MPSO-NDW and PSO-LDW  

for Sphere function 

 

 
Figure 6. Convergence speed of MPSO-NDW and PSO-LDW 

forRosenbrock function 
 

 

 
Figure 7. Convergence speed of MPSO-NDW and PSO-LDW  

forGriwank function 
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Table 4.  Convergence speed of MPSO-NDW  

and PSO-LDW 

Method 

Convergence Speed 

Sphere 

Function 

(fit ≤ 0.001)   

Rosenbrock 

Function 

(fit ≤ 1)  

Griwank 

Function  

(fit ≤ 0.1) 

PSO-LDW 14 18 16 

MPSO-NDW 12 16 14 

 

 
Table 5.  Success rate of MPSO-NDW 

and PSO-LDW 

Method 

Success Rate 

Sphere 

Function 

(Err ≤ 0.001)   

Rosenbrock 

Function 

(Err ≤ 0.1)  

Griwank 

Function  

(Err ≤ 0.001) 

PSO-LDW 49 13 37 

MPSO-NDW 61 21 47 

 

 

The comparison of convergence speed between MPSO-NDW and PSO-

LDW for Sphere function, Rosenbrock function and Griwank function are 

shown in Fig. 5, Fig.6, and Fig.7, respectively.  It is easy to see that the 

convergence speed of MPSO-NDW is faster than that of PSO-LDW.  Also, Table 

4 shows convergence speed averaged over 100 runs in obtaining the 

predetermined fitness value.  In here, the predetermined fitness value for 

Sphere function, Rosenbrock function and Griwank are 0.001, 1 and 0.1, 

respectively.   To achieve these values, PSO-LDW needed 14, 18, and 16 

iterations.  While iterations required by MPSO-NDW to achieve these values 

are 12, 16 and 14, respectively.  

Success rate represents the success of method in obtaining a 

predetermined minimum error within all runs. Table 5 shows the success 

rate of MPSO-NDW and PSO-LDW within 100 runs for each function.  The 

predetermined minimum error for Sphere function, Rosenbrock function and 

Griwank function are 0.001, 0.1, and 0.001, respectively.  In general, the 

success rate of MPSO-NDW is higher than PSO-LDW for all benchmark 

function.  
 

 

5.  CONCLUSIONS 

The paper has investigated the impact of the period and decreasing rate 

of exploration-exploitation ability in PSO.  In the original PSO called PSO-

LDW, the period and decreasing rate of both abilities was set equal.  The 

proposed MPSO-NDW introduces a new parameter called nonlinear index 

number to control the period and decreasing rate of both abilities or path of 
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inertia weight.  The main contribution of this paper is to show that the 

nonlinear path of inertia weight can affect the performance of PSO.  The 

second contribution is to give us new ideas for analysis PSO using controlling 

the usage period of exploration-exploitation abilities in PSO.The proposed 

MPSO-NDW was applied to three well known benchmark function and 

compared with the common PSO-LDW. Experimental results indicate that a 

proper controlling of the period and decreasing rate can increase the 

performance of PSO in term of accuracy, success rate and convergence speed. 
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