
EMITTER International Journal of Engineering Technology

ISSN: 2443-1168, Vol. 7, No. 2, December 2019, pp. 480~493

DOI : 10.24003/emitter.v7i2.380

Copyright © 2019 EMITTER International Journal of Engineering Technology - Published by EEPIS

480

An Efficient Solution to Travelling Salesman Problem using
Genetic Algorithm with a Modified Crossover Operator

Md. Sabir Hossain1*, Sadman Sakib Choudhury1, S. M. Afif Ibne Hayat1,

Ahsan Sadee Tanim2, Muhammad Nomani Kabir3,

Mohammad Mainul Islam4

1Chittagong University of Engineering & Technology, Chittagong, Bangladesh
2The International University of Scholars, Dhaka, Bangladesh

3Universiti Malaysia Pahang, Malaysia
4Verizon Media, California, USA

*Email: sabir.cse@cuet.ac.bd

Received March 30, 2019; Revised May 28, 2019; Accepted June 30, 2019

Abstract

Traveling salesman problem (TSP) is a famous NP-hard problem in the

area of combinatorial optimization. It is utilized to locate the shortest

possible route that visits every city precisely once and comes back to

the beginning point from a given set of cities and distances. This paper

presents an efficient and effective solution for solving such a problem.

A modified crossover method using Minimal Weight Variable Order

Selection Crossover (MWVOSX) operator, a modified mutation using

local optimization and a modified selection method using KMST is

proposed. MWVOSX operator chooses a particular order from multiple

orders which have the minimum cost and takes the remaining from

the other parent in backward and forward order. Then it creates two

new offspring. Furthermore, it selects the least weight from the two

offspring. The efficiency of the proposed algorithm is compared to the

classical genetic algorithm. Comparisons show that the proposed

algorithm provides much efficient results than the existing classical

genetic algorithm.

Keywords: Traveling Salesman Problem, Crossover Operator,

Minimal Weight Variable, Genetic Algorithm.

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

481

1. INTRODUCTION

For a given set of nodes and the travel distance between each node-pair,
TSP is to find the most ideal way of visiting every node such that the total
traveling distance is minimized. TSP is an NP-Hard problem, which implies
that no recognized algorithm can resolve it in polynomial time. The traveling
salesman problem can be solved by using brute force, DP approach, genetic
algorithms, ant colony optimization, simulation annealing, etc. It is an old
problem and there is no perfect solution to find the optimal route for an
unlimited number of separated nodes.

The simplest way to solve TSP is to try all the possible routes to visit all
the cities while a particular route combination is found such that summing
distances between the cities is the shortest. This very straight-forward
solution is called a brute-force or exhaustive search. However, this technique
has a shortcoming of immense importance – running time of Θ((n-1)!)
Permutation of n cities and calculate the total distance to visit all the cities. And
as n grows, the factorial (n-1)! rapidly rises to a larger number than all
polynomials and exponential features (however, lower than double
exponential functions) n-1. This enormous growth of possible routes means
enormous growth of time needed for solving TSP even for contemporary
computers. On the other side, there is no doubt that the result will be surely
the shortest route. Unfortunately, due to its time complexity Θ(N!), this
algorithm is not suitable for this work. If there exists another algorithm with
better time complexity and exactness (thus returning the routes of the same
quality as with brute-force algorithm, i.e. optimal route), it should be chosen
for the implementation.

The main objective of this research is to find a solution that is efficient
than the naive and dynamic programming approach. Using Modifying
mutation process and crossover using MWVOSX operator, as mutation and
crossover process is the most crucial part in a genetic algorithm which
provides lower time complexity than the other approaches.
 The remaining of this paper is arranged in the following categories:
Section 2 contains some overview of related work that was done in previous;
Section 3 discusses the contribution of the current research. Section 4 shows
the proposed methodology in details. Finally, Section 4 is about processing
example and rest 5 and 6 are summarizing the evaluation and future work.

2. RELATED WORKS

 A lot of research work done in TSP earlier. In paper [1] a Discrete
Symbiotic Organisms Search (DSOS) is proposed. To demonstrate that the
proposed arrangement approach of the DSOS is a promising system for taking
care of combinatorial issues like the TSPs, a lot of benchmarks of symmetric
TSP occasions chose from the TSPLIB library are utilized to assess its
execution against other heuristic calculations. Another work on various parent
selection methods named as Elitism, Roulette Wheel & amp; Tournament

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

482

selection methods to solve TSP [2]. For a small number of inputs, they show a
similar result, but they produce better results for larger inputs.

Paper [3] proposed a discrete imperialist competitive algorithm to
solve TSP. It is a socio-politically driven meta-heuristic procedure. They
introduced the 2-opt algorithm in the revolution procedure. It shows excellent
performance in a small-scale dataset. Other authors propose a quantum
technique to resolve TSP [4] utilizing a phase evaluation strategy. They apply
a phase estimation algorithm for finding distances of all the routes. Then
calculate the least possible distance to find the route. Paper [5] TSP is solved
by Black Hole algorithm. BH algorithm is based on the meta-heuristic
algorithm. This algorithm is faster and provides a good solution than a generic
algorithm. Six different crossover procedures are described in [6]. The
algorithms that are used are Deterministic algorithm, Approximation
algorithm, Genetic algorithm and applied the genetic algorithm. Six crossovers
which were discussed in this journal are Uniform crossover operator, Cycle
Crossover, Partially Mapped Crossover (PMX), the uniform partially mapped
crossover (UPMX) and Ordered Crossover (OX). OX performed the best in their
experiment. A new method called “Modified Cycle Crossover (CX2)” operator
[7] which is used to solve TSP using a genetic algorithm. There are 6 steps to
follow. Then PMX and OX are compared to the proposed method. CX2
performed better compared to the other two in the experiment. In [8],
Varshika Dwivedi, Tarun Chauhan, Sanu Saxena, Princie Agrawal proposed a
solution using genetic algorithm operators which is Sequential Constructive
Crossover (SCX) operator. They show SCX result in a high-quality solution.
Also, they provide a relative comparison between genetic algorithm and
dynamic programming for solving the problem. Md. Lutful Islam, Danish
Pandhare, Arshad Makhthedar, Nadeem Shaikh [9] work on Partially Matched
Crossover, Two Point Crossover and order Crossover are used in this work.
They show enough efficiency for a high number of inputs. Map framework and
a parallel algorithm are mentioned in this paper. In recent days TSP is solved
by artificial bee colony (ABC) [10]. The author used four phases named -
Initialization phase, a phase of employed bees, a phase of onlooker bees, a
phase of scout bee. In every phase, the system memorizes the best solution and
evaluated it.

The authors in [11] discussed solving TSP using an artificial ant colony
system (ACS). They presented combinatoric optimization, candidate list
methods to solve the problem. Their key contribution is that ACS can give
better performance in solving TSP than any other methods in almost every
case. There are many ways in which ACS can be improved so the time needed
to complete tours.

3. ORIGINALITY

 In this noble research, we proposed a modified genetic algorithm
approach to solve the traveling salesman problem. In the algorithm selection
process will be modified using Kruskal's minimum spanning tree algorithm

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

483

and the mutation process will be modified using local optimization. For a
weighted, undirected and connected graph a minimal spanning tree is a
spanning tree with weight less or equal to every other spanning tree. From a
set of local solutions, finding an optimal solution is a local optimization.
However, we were unable to modify the selection process using KMST.
MWVOSX crossover operator was used in our proposed genetic algorithm
method. Traveling salesman problem has several applications in real-world
phenomena. Such as in complex optimization problems, shift scheduling,
planning, airline crew scheduling, etc.

4. SYSTEM DESIGN

In this proposed method, several steps have been done including
distance calculation using fitness function, modified crossover using MWVOSX
operator.

4.1 Dynamic Programming

In this method, the tour begins at node C1. The minimum cost of the
cycle from C1 to some other node Ci (visiting each node exactly once and then
back to c1) can be said as cost1i + disi1 where cost1i is the cost of the shortest
path from C1 to Ci. cost1i can be calculated with dynamic programming by
considering all subsets. Let D(S, Ci) be the shortest path from C1 to Ci visiting
each node exactly once.

 If |S| = 2, then D(S, Ci) = dis1i. If |S| > 2 then the D(S, Ci) is specified by
the recurrence min(D(S −{Ci}, j) + disji).

The complexity of this algorithm is n2*2n. Although improved than the
brute-force approach, this algorithm becomes impractical and cannot be used
for larger problems.

4.2 Fitness Function

A fitness function or objective function in a genetic algorithm for
traveling salesman problem means the probability to be selected for mating
is proportional to the value of fitness function. Fitness function evaluation is
fused to allots a value to every organism, noted as fi. This fi value is a figure of
legitimacy which is determined by utilizing any domain knowledge that
applies. On a fundamental level, this is the main point in the algorithm that
domain knowledge is important. Organisms are picked utilizing the fitness
value as a guide, where individuals with higher fitness values are picked more
often.

For minimization problem, one method for characterizing a fitness
function is as fi is the objective function. Since TSP stands as a minimization
problem; we consider this fitness function, where fi determines Euclidean
distance of every tour of a population, where tours are represented by
chromosomes. The technique utilized here was to compute the total Euclidean
distance Di for every population first, then calculate fi by utilizing the
equation,

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

484

fi = 1 / Di

where Di is the Euclidean distance of tours in population.

4.3 Generic Algorithm

A genetic algorithm has a place with the larger class of evolutionary
algorithms. It is inspired by the theory of natural selection by Charles Darwin.
Genetic algorithms rely on bio-inspired operators like mutation, selection, and
crossover. It is hugely used to generate high-quality solutions to search
problems and optimization problems such as integer nonlinear problems
(INLP). The typical genetic algorithm requires two things. They are a genetic
depiction of solution dominion and fitness function for evaluation of solution
dominion. Genetic algorithms are broadly utilized in numerous fields such as
automation, automotive design, improved telecommunications routing,
engineering plan, and computer-aided molecular plan.

1. for i: = 1 to population size [Input of cities as population]
2. start
3. select new starting city c;
4. tour[i] := adjacent city (starting city = c);
5. optimize-local (tour[i])
6. end;
7. while evolution do
8. start
9. select parent_l and parent_2;

 [Selection]
10. child := crossover (parent_l, parent_2) ;

 [Crossover]
11. activate-edges (child, parent_l);
12. optimize-local (child); [Mutation]
13. if ¬∃i<population size | length(tour{i]) - length(child) |< a [Survival

of the fittest]
14. ̂ ∃i<population size length(tour{i]) > length(child)
15. then substitute the longest tour by child
16. end;

Figure 1. Pseudocode of generic algorithm

To introduce the stream of a capacity of a program or framework

through a graph or outline is called a Flowchart. A flowchart is the graphical
introduction type of the arrangement of an issue.

Genetic algorithm (GA) is an adaptable optimization technique. Figure
2 demonstrates the optimization procedures of GA, the two essential
operations are crossover and mutation. The GA associates the best of the last

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

485

generation through the crossover, in which parameter esteems are traded
between parents to form a child. A portion of the parameters mutate.

The objective function at that point decides on the fitness of the new
arrangements of parameters and the calculation repeats until the point when
it converges. With these two operators, the GA can investigate the full cost
surface to abstain from falling into local minima. In the meantime, it exploits
the best highlights of the previous generation to converge to progressively
improved parameter groups.

Figure 2. Overview of Proposed Algorithm.

1. for j := 1 to #city do {#city = number of cities}
2. for i := 1 to #pop do {#pop = population size} [Generation of

the city-populations]
3. start
4. choose new starting city c;
5. tour[j,i] := adjacent city (starting city = c);
6. optimize_local (tour[j,i])
7. end;
8. while evolution := true do
9. start

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

486

10. for j := 1 to #city do
11. for k := 1 to #N do {#N = number of steps until

degeneration}
12. start
13. choose parent_1 and parent_2;

 [Selection]
14. optimize-KMST (tour[j,i]) {KMST = Kruskal Minimum

Spanning Tree}
15. child := crossover_MWVOSX (parent_1, parent_2) ;

 [Crossover]
16. activate-edges (child, parent_1);
17. optimize-local (child);

 [Mutation]
18. if ¬∃i< population size | length(tour{i]) - length(child) | < a

[Survival of the fittest]
19. ̂ ∃i< population size length (tour{i]) > length(child)
20. then substitute the longest tour on city j by child
21. end;
22. for k := 1 to #m do {#m = number of merging steps}

[Refreshing]
23. start
24. choose arbitrarily i, jand i’, j’ with tour [i,j] new on city i’ and tour

[i',j’] new on city i;
25. swap tour [i,j] and tour [i', j’]
26. end; end;

Figure 3. Pseudocode of proposed algorithm

 5. PROCESSING EXAMPLE

 In a traditional traveling salesman problem, a salesman has to start
from one city and visit all another city exactly once and come back to starting
city. TSP is all about the least distance path with above conditions. Let's
consider a problem where there are 8 cities numbered from 1 to 8.

1 2 3 4 5 6 7 8

Step 1:
This step starts with randomly generated k chromosomes, called population.
Each population represents an individual solution. For each chromosome, the
starting city is fixed.

1 2 7 6 8 5 3 4

Chromosome 1

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

487

1 5 3 8 4 6 2 7

Chromosome 2

1 5 8 7 2 6 4 3

Chromosome 3

1 8 3 6 5 7 4 2

Chromosome 4

Step 2:
Using a selection method, two chromosomes are selected as parents. For
consideration, let's take parent 1 as chromosome 4 and parent 2 as
chromosome 1.

1 8 3 6 5 7 4 2

Parent 1

1 2 7 6 8 5 3 4

Parent 2

Step 3:
Firstly, a number of multiple swaths with consecutive cities in specific points
are taken for the following step from parent 1.

Step 4:
The length is calculated for each selected swath using order crossover and the
swath with minimal weight is selected and taken as child chromosome.

Step 5:
We create two duplicates of the child as child_1(Forward)& child_2(Reverse),
and then forward them to fill the remaining from parent_2 in forward and
backward order.

Step 6:
The total distance of child_1 & child_2 is calculated. The smallest weighted
child is selected.

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

488

Step 7:
When the offsprings are almost identical with each other and the total
distance is not converging any more then the mutation is done. Mutation is
done in a randomly selected parent chromosome.

Step 8:
All the offsprings or children are evaluated through a fitness function to find
the optimal tour for the salesman.

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

489

6. EXPERIMENTAL RESULTS AND ANALYSIS

To analyze the proposed algorithm, it was tested for 10 different data
sets consisting of 5 to 50 cities. We can analyze the algorithm on criteria which
is based on the generation number to find the optimal distance. The generation
number can vary for the same dataset to find an optimal solution. So, we
considered an average generation number.

Figure 4. Generations vs. Cities Graph

From figure 4, we can note that to find the optimal solution, the
generation number increases drastically as the number of cities increases. But
the shortest tour found from these results is almost as same as the optimal
solution. So we can conclude that this proposed algorithm can perform better
for smaller data inputs. Its performance degrades when the number of cities
increases over time.

For the experimental result, we used a known TSP problem named
‘berlin52' and two other random data set. ‘berlin52' contains 52 coordinates
of various locations inside Berlin city as shown in figure 1, 2 and 3.

5, 2 10, 4 15, 10 20, 15
25, 50

30, 100
35, 150

40, 280

45, 498

50, 669

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

G
e

n
e

ra
ti

o
n

s

Number of Cities

Generations vs. Cities Graph

Generations

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

490

(a) (b)

Figure 5.1. Processing Example of (a) Experiment 1

(b) The optimal solution of Experiment 1

The optimal solution to ‘berlin52' problem is the best distance to travel
to all locations. In our test, the best distance was 7526m. This optimal solution
was obtained in 337 generations with 1015 times of mutation.

(c) (d)

Figure 5.2. Processing Example of (c) Experiment 2

(d) The optimal solution of Experiment 2

(e) (f)

Figure 5.3. Processing Example of (e) Experiment 3

(f) The optimal solution of Experiment 3

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

491

To compare the proposed algorithm with other genetic algorithm
methods, they are tested one by one on three different data set.

Table 1.Comparison between Proposed GA and other GA methods
Algorithms Experiment Cities Average

Generation
Average
Mutation

Best
result

Proposed GA

Experiment 1

(berlin52)

52 337 1015 7526

Classical GA 52 8654 16822 7537

GA using
Ordered
Crossover

52 5211 9361 7530

GA using
Modified
Cycle
Crossover

52 1087 3023 7527

Proposed GA

Experiment 2

70 840 2578 5221

Classical GA 70 19279 50137 5238

GA using
Ordered
Crossover

70 12825 29346 5229

GA using
Modified
Cycle
Crossover

70 2557 7340 5225

Proposed GA

Experiment 3

100 2758 8243 5854

Classical GA 100 57354 120535 5871

GA using
Ordered
Crossover

100 45120 77542 5860

GA using
Modified
Cycle
Crossover

100 10653 29252 5854

We can see that our proposed algorithm gives high-performance

solutions compared to other genetic algorithm methods to solve the traveling
salesman problem for the same data set.

7. CONCLUSION

In this research, a genetic algorithm with a modified mutation method
and a modified crossover method using Minimal Weight Variable Order
Crossover (MWVOSX) operator is proposed and implemented. They were also
discussed in the context of the TSP problem. This research will certainly
accelerate the developing genetic algorithm. The proposed method produces
us high-performance results. We also proposed a modified selection method

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

492

using Kruskal's minimum spanning tree. However, the selection method could
not be implemented.

The performance of our proposed GA method is compared with three
other GA methods. From the acquired results, it is noted that the proposed
method generates better results than others. It is hoped that this proposed
genetic algorithm method can be potentially used in applications.

Acknowledgment

This research was conducted by the authors from Chittagong
University of Engineering & Technology, Chittagong, Bangladesh; The
International University of Scholars, Dhaka, Bangladesh; Universiti Malaysia
Pahang, (UMP) Malaysia; and Verizon Media, California, USA. The work was
partially supported by UMP research grant RDU170397 through IBM Center of
Excellence at UMP.

REFERENCES

[1] Ezugwu, A. E. S., & Adewumi, A. O. Discrete symbiotic organisms

search algorithm for travelling salesman problem. Expert Systems

With Applications, 87, 70-78. 2017.

[2] Chudasama, C., Shah, S. M., & Panchal, M. Comparison of parents

selection methods of genetic algorithm for TSP. In International

Conference on Computer Communication and Networks CSI-COMNET,

Proceedings (pp. 85-87). 2011.

[3] Xu, S., Wang, Y., & Huang, A. Application of imperialist competitive

algorithm on solving the traveling salesman

problem. Algorithms, 7(2), 229-242. 2014.

[4] Srinivasan, K., Satyajit, S., Behera, B. K., & Panigrahi, P. K. Efficient

quantum algorithm for solving travelling salesman problem: An

IBM quantum experience. arXiv preprint arXiv:1805.10928. 2018.

[5] Hatamlou, A. Solving travelling salesman problem using black hole

algorithm. Soft Computing, 22(24), 8167-8175. 2018.

[6] Abdoun, O., & Abouchabaka, J. A comparative study of adaptive

crossover operators for genetic algorithms to resolve the traveling

salesman problem. arXiv preprint arXiv:1203.3097. 2012.

[7] Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd

Shoukry, A., & Gani, S. Genetic Algorithm for Traveling Salesman

Problem with Modified Cycle Crossover Operator. Computational

intelligence and neuroscience, 2017.

[8] Dwivedi, V., Chauhan, T., Saxena, S., & Agrawal, P. Travelling salesman

problem using genetic algorithm. IJCA Proceedings on Development of

Reliable Information Systems, Techniques and Related Issues (DRISTI

Volume 7, No. 2, December 2019

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

493

2012), 1, 25. 2012.

[9] Islam, M. L., Pandhare, D., Makhthedar, A., & Shaikh, N. A Heuristic

Approach for Optimizing Travel Planning Using Genetics

Algorithm. International Journal of Research in Engineering and

Technology eISSN, 2319-1163. 2014.

[10] Karaboga, D., & Gorkemli, B. Solving Traveling Salesman Problem

by Using Combinatorial Artificial Bee Colony

Algorithms. International Journal on Artificial Intelligence

Tools, 28(01), 1950004. 2019.

[11] Dorigo, M., & Gambardella, L. M. Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE

Transactions on evolutionary computation, 1(1), 53-66. 1997.

