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Abstract 
 
This study aims to popularize low voltage power supply design 
especially for space satellite Cubesat mission and other portable 
consumer electronic devices. In this context, a preliminary design 
of an electrical power subsystem (EPS) is carried out for a 
conceptual 1u Cubesat mission in this paper. Mathematical 
modeling of the basic elements of the EPS is presented. 
Photovoltaic (PV) power generation system that is selected is 
made up of triple-junction solar cells, and the battery charging 
system based on lithium technology as well as the power 
conditioning converters are selected based on single ended 
primary inductance converter topology popularly abbreviated as 
SEPIC. Triple-junction solar PV cell results are verified by 
comparing with the datasheet values. A maximum power point 
tracking algorithm which is known as perturb and observe is 
implemented and proportional-integral controller is used for the 
SEPIC. All of these are well analyzed, mathematically modeled 
and simulated. Feasibility of the designed EPS is verified by 
comparing with similar devices from different manufacturers. 
 
Key Words: Space technology, CubeSat, Electrical power 
subsystem, DC/DC power converters, Solar photovoltaic cells. 

 
 

1. INTRODUCTION 

The space industry stakeholders need a very ideal electrical power 
subsystem (EPS) that can work perfectly well under constraints, if 
achievable, function beyond the mission duration. So far, only solar 
photovoltaic (PV) system can be employed for the power generation on a 
CubeSat looking at specifications and design guidelines given in [1]. This is 
especially required if the satellite is to operate in a region of space called the 
low earth orbit (LEO) since there are frequent eclipses on its path [2]. In 



Volume 7, No. 1, June 2019 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

276 

addition to solar PV system, load regulators (power conditioning and 
distribution) must be also included in the satellite system [1], [3], and [5]. In 
[2], the main objective of CubeSat program is given to provide opportunities 
especially for university students to test their designs and launch overheads 
particularly for experiments, other commercial and scientific demonstrations 
purposes. Advancement of a budget-constrained EPS would require that the 
design engineers develop custom or use commercial-off-the-shelf 
components like the solar PV cells, lithium based batteries and the other 
electronic components for the power supply. Appropriate design practice 
therefore is expected to be the order to ensure that the design complies with 
the requirements in [1]. According to the works presented in [1]-[5], the EPS 
contains the solar PV cells for generating power required, a series converter 
for maximum power point tracking (MPPT), a voltage regulator for power 
conditioning and a lithium battery storage unit. 

The employment of PV cell in space satellites have directed the 
researchers to focus on the modeling, simulation and performance evaluation 
of relatively new technologies. Therefore, they need to verify the demands 
being reported by the manufacturers and design MPPT algorithms [6]-[8]. 
Hence, there is a requirement to design hardware that can extract the 
maximum power from PV cells at all times, that's why, it’s necessary to carry 
out modeling of the PV cell with multi-junction solar cells [9]. Viability of 
CubeSat technology necessitates this approach since it has become popular 
over the years among scientists and other professional engineers. 

The main purpose of this study is to design and simulate all the main 
building blocks of an EPS for a conceptual 1U CubeSat that can safely, 
effectively and continuously supply all its loads in LEO without any failure for 
the intended mission lifetime where it would be employed. Objective of 
concept is also to have a simple and cost effective EPS design that can be 
reused on any type of mission of its kind. When the study is briefly 
overviewed, the produced energy from PV cell must be controlled using 
DC/DC converter in order to provide a regulated voltage for Cubesat mission. 
Among the existing DC/DC converters in the literature, single ended primary 
inductance converter (SEPIC) topology that is controlled with PI controller is 
preferred for this application. Also, lithium technology is used for battery 
storage system. The overall designed EPS system is illustrated in Figure 1. In 
order to achieve the stated objectives above, the following tasks are 
conducted. A literature review presented in Table 1 on CubeSat projects and 
EPS designs of these projects are exhibited. Design of a skeletal and simple 
reusable CubeSat EPS that can be used in LEO missions or other uses in 
portable consumer electronics like mobile phones is achieved. A review on 
the available and most viable PV cells is also carried out and from among the 
bests, a choice is made based on heritage and reported performance of the 
cells. Most popular load voltage regulators and switched-mode power 
supplies for power conditioning and distribution are reviewed and a decision 
is taken on which one to employ in this application. A review with a view to 
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considering the battery technologies and associated efficiencies available for 
space applications especially LEO is also attempted and the most suitable 
selected. Solar PV cells are mathematically modeled and simulated in 
simulation environment. 3.3 V and 5.0 V DC power supply and MPPT based 
battery charging converters are designed, modeled and simulated by using 
state-space averaging technique. A comparison is carried out with similar 
studies and effectiveness of designed concept is presented. The main 
contributions of this paper are briefly presented as in the followings. EPS based 
on triple-junctions solar PV cells and SEPIC is designed and mathematically 
analyzed, and verification of EPS is done in a comparative ways. The obtained 
results can be beneficial for power supply designers. In addition, space industry 
stakeholders can take the advantageous of the simulation results for space satellite 
Cubesat mission without necessarily having to carry out extensive literature 
review thanks to this study. 

The organization of this paper is as follows. In Section II, the theory 
and mathematical modeling of triple-junction solar cell is introduced 
together with modeling and control of SEPIC. Section III presents the 
simulation results. Simulation validation is shown by comparing with 
datasheet of triple-junction PV cell at STC and, I-V and P-V characteristics of 
cell under various conditions are exhibited. Voltage and current output 
characteristics are given with satisfactory outcomes for 3.3V and 5V SEPIC, 
respectively. Evaluation of obtained results is discussed by verifying the 
superior performance of designed EPS in Section IV. Finally, Section V 
concludes this paper. 

 

 
 

Figure 1. Schematic diagram of designed EPS system 
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Table 1: A review of some University CubeSat projects 

Name Owner Type 
Solar Cell 

Technology 

Battery Cell 

Technology 
Architecture 

Bus 

Voltages 

NCube1 
Norwegian 
University 

1U Not Sure Not Sure Not Sure 
3.3V & 

5.0V 

DICE 
Utah State 
University 

1.5U 
Triple 

Junction 
Lithium – 
Polymer 

Centralized 
& PPT 

8.2V 
(Unregula
ted), 5.0V 
and 3.3V 

Name Owners Type 
Solar Cell 

Technology 
Battery Cell 
Technology 

Architecture 
Bus 

Voltages 

NUTS-
NTNU 

Norwegian 
University 

2U N/A 
Lithium-

ferrite 
 

MPPT and 
Distributed 

3.3V & 
5.0V 

Aalto – 
1 

Aalto 
University 

3U 
Triple 

Junction 

Lithium 
Polymer 

cells 

MPPT and 
Centralized 

3.3V, 5.0V 
and 12V 

Aalto – 
2 

Aalto 
University 

2U 
Triple 

Junction 
Lithium-ion 

MPPT and 
Centralized 

3.3V and 
5.0V 

NMTSat 
New 

Mexico 
Tech. 

3U 
Triple 

Junction 
N/A MPPT 

3.3V and 
5.0V 

Concept
ual 

Design 

Islamic 
Azad 

University 
 

Nano
satell

ite 

Multi 
Junction 

Lithium-ion 
battery 

MPPT and 
Distributed 

10.5V 

TINYSC
OPE 

Naval 
Postgradua

te 
School 

5U or 
6U 

Advanced 
Triple 

Junction 
Lithium-ion Not sure 

3.3V, 5.0V 
and 12V 

CubeST
AR 

University 
of Oslo 

2U 
Multi 

Junction 
LiFePO4 

battery cell 
MPPT and 

Distributed 
3.3V and 

5.0V 

ESTCub
e-1 

University 
of Estonia 

1U N/A Lithium-ion 
MPPT and 

Distributed 
N/A 

ECOSat 
University 
of Victoria 

Not 
clear 

Ultra-Triple 
Junction 

Lithium-ion 
DET Direct 

Energy 
Transfer 

3.3V, 5.0V 
and 7.0V 

CubeCa

t-1 

Universitat 
Politecnica 

du 
Catalunya 

1U N/A N/A 
MPPT and 

Distributed 
battery bus 

3.3V and 
5.0V 

OUFTI-
1 

University 
of Liege 
Belgium 

1U 
Triple 

Junction 
Lithium 
Polymer 

DET Direct 
Energy 

Transfer 

3.3V, 5.0V 
and 7.2V 

Goliath 
University 

of 
Bucharest 

1U N/A N/A 
DET 

Centralize 
3.3V, 5.0V 

Explore
r 1 

[PRIME
] 

Montana 
State 

University 
1U N/A Lithium-ion N/A N/A 

e-star 
Politecnico 
di Torino 

Italy 

1U N/A N/A N/A N/A 

AAUSA

T 
Aalborg 

University 
1U N/A 

Lithium-ion 
cells 

MPPT 5.0 V 

Kufasat 
University 

of Kufa 
1U 

Hybrid 
AzurSpace 

TJ 
 

Lithium 
Polymer 
batteries 

MPPT 3.3V, 5.0V 
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NPSAT1 
Naval 

Postgradua
te School 

1U 
Improved 

Triple 
junction 

Lithium 
Polymer 
batteries 

MPPT 
Centralized 

3.3V, 5.0V 

FunCub
e-1 

AMSAT-UK 1U 
Triple 

Junction 

Lithium-ion 
GOMSpace 
Denmark 

MPPT 
3.3V and 

5.0V 

NANOS

ATC-

BR1 

Federal 

University 
1U N/A N/A 

MPPT 

Distributed 

3.3V and 

5.0V 

 
2. DESIGN, MODELING AND OPERATION OF ELECTRICAL POWER 

SUBSYSTEM 
2.1 Theory and Mathematical Modeling of Triple-Junction Solar Cell 

Performance characteristics of a space grade PV triple-junction solar 
cell are successfully evaluated using a single-diode model equivalent circuit 
and analytical modeling in the literature. The theory and evolution of multi-
junction solar cell have been explained in detail in [10-13], while the methods 
of modeling of PV cells are given in [10-17]. 

The triple-junction solar cell is made as stack of three individual sub-
cells having dissimilar parameters of decreasing energy band gap connected 
together in series with the sub-cell having the lowest band gap. This 
construction ensures a better absorption of the light spectrum reaching the 
cell. The triple-junction cell obtains its higher efficiency status to this method 
of production [10-17]. Fabrication methods of triple-junction solar cells are 
investigated in [10] and [13]. The solar PV cell is modeled as a current source 
with an anti-parallel diode to account for reverse saturation and sometimes 
these reverse saturation and recombination currents are lumped together. 
Two resistors, one in parallel with the diode(s) and the other in series with 
them are connected in the model. The one-diode model known as a 5–
parameter model is addressed in [15] and [18]. 

Figure 2 shows a one-diode 5-parameter model for a single junction 
cell whereas three of such cells are connected together to obtain triple-
junction solar cell as indicated in Figure 3.  
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Figure 2. A Generic one-diode model of a solar cell 

For the purpose of this modeling and performance evaluation of the 
mentioned cell type, the AZURSPACE triple-junction solar cell is selected 
given in [19]. It is assumed that the sub-cells are latticed-matched and 
therefore providing same current unlike [20] where the minimum current of 
the group is taken. Because, the study presented in [20] is based on Air Mass 
(AM) greater than zero. With reference to Figure 3, cell current can be 
obtained using Kirchhoff's current law as 

� = ���,� ��,� ���,�                                                                                            (1) 

where � is the current of the cell, ���,� is the photo-generated current in the 

sub-cells, ��,� is the diode current for the sub-cells, and ����  the current in the 
shunt branch of each sub-cell, the subscript � = 1, 2, and 3 for the three sub-
cells, respectively. Photo-generated current ���� is given by  

���,� = ���� +  ����
��� ������.

�

����
                                                                              (2) 

In Equation (2), ��� is the short-circuit current of the cell when open-
circuit voltage equals to zero. ����

 is the short-circuit temperature coefficient 

in ���/℃ and it is a very small value for triple-junction cells and its effect is 
minimal [21]. �� and ���� are the operating temperature of the cell, 

respectively. Reference temperature at standard test conditions (STC) is used 
as 28℃.  ���� and � are the reference solar irradiance given as 1367�/��, 

AM0, at STC and the actual irradiance falling on the cell area, respectively. 

V
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Figure 3. One-diode model of a triple-junction solar cell 

��,� = ��,�. ��
�.

�� � � .�.� �,��

� �.�� .� � 1�                                                                                             (3) 

��,� =  ���,�. ��
�

�� ��

�
�
. �

� �.� � ,�(��)

� �.�� .� �                                                                                           (4) 

The diode current ��,� and ��,� are a function of the lumped reverse 
saturation and recombination currents ���,� given as �� for the 5-parameter 
model. ���,� is determined usually through measurements given in [11] and 
[15]. �� is another ideality constant, ��,�(��) is the band gap and  ��, ��, and � 

are the ideality factor depending on the tunnel junction quality. Boltzmann's 
constant given by 1.380658 × 10� ���/�  and the charge of electron 
as 1.602 × 10� ���, respectively. � is the voltage at the terminal of the cell. 
��,� and � are the series resistances of  the sub cells, the effective area of the 
cell, respectively. From Equation (4), band gap energy  ��,�(��) is given by the 

relation  

��,�(��) = ��,�(�)
����

�

�����
                                                                                           (5) 

��,�(�) in Equation (5) is the measured band gap obtained at temperature of 

zero Kelvin. �,� and �� are all distinct for the semiconductors and directly 
related to temperature effect. �,� is the energy per Kelvin of the material 
while �� is a fitting parameter for the temperature. Shunt current indicated as 
���,� is given in Equation (6) 

���,� =
� ��.�.��,�

� .��,�
                                                                               (6) 
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where ��,� is the parallel resistance of the cell and often neglected. 

Substituting Equations (2), (3), (4), and (6) into equation (1) yields equation 
(7) known as the output current equation of the cell given as 

� =  ���,� ��,� ��
�

� � �.� .� �,�
� .� �

�
1�

���.�.��,�

�.��,�
                                                                 (7) 

Cell voltage of each sub cell �� extracted from Equation (7) by neglecting the 
parallel resistance �� seen in [15] and [20] derived in Equation (8)  

�� =
��.�.��

�
. ln�

���,�

��,�
+ 1� �. �. ��,�                                                                              (8) 

The total cell voltage is the summation of the voltages of the sub cells �� 

� =  
�.��

�
. ���. ln�

���,�

��,�
+ 1� +  ��. ln�

���,�

��,�
+ 1� + ��. ln�

���,�

��,�
+ 1�� �. �. ��(9) 

Open-circuit voltage ���,� of each sub cell is shown in Equation (10) and the 

total ���  of the cell is given in Equation (11) 

���,� =  
�.��

�
. ���. ln�

���,�

��,�
+ 1��             (10) 

��� =  
�.��

�
. ���. ln�

���,�

��,�
+ 1� +  ��. ln�

���,�

��,�
+ 1� + ��. ln�

���,�

��,�
+ 1��        (11) 

Equations (7) and (9) are the output current and voltage equations, in order. 
Note that  

�� =  ∑ ���
�
�� �                                                       (12) 

Fill factor (FF) is a measurement of qualitative a particular cell 

�� =  
���� .����

���.���
                                                     (13) 

where ����  is the cell voltage at the maximum power point, and ����  is the 

current of the cell. Equation (13) is used to obtain the conversion efficiency � 
of the cell which is shown in Equation (14)  

� =
�� .���.���

�.�
× 100%                                                     (14) 

where � is the solar irradiance received by the cell and � is the area of the 
cell studied in ��as in [20] and [22]. Another method for calculating the 
conversion efficiency is explained in [13]. 

The designed model is implemented using Equation (1)-(14), and 
these are normally enough to implement the electrical model of the triple-
junction solar cell in a simulation tool. 
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Table 2. Input values of the fitting parameters necessary to implement the model 

Parameter Value Parameter Value Parameter Value 
���(�) 1.79 �� 1.81 �� 1.89 

���(�) 1.39 �� 1.86 �� 1.59 

���(�) 0.68 �� 1.44 �� 1.43 

��� 0.0253��/℃ �� 7.5�� � �� 1.86�� � 

��� 0.0005��/℃ �� 5.405�� � �� 2.195�� � 

��� 0.0098��/℃ �� 4.7774�� � �� 10.5�� � 

��� 6.93��/℃ ���  0.023Ω ����      298.15k 

��� 6.2��/℃ ��� 0.0012Ω  ���� 1367�/�� 

��� 5.6��/℃ ��� 0.0008Ω  I���  504.4�� 

�� 372 ��� 16� Ω  ����  2411�� 

�� 204 ��� 4.5� Ω  V��  2700�� 

�� 235 ��� 540��  ��� 520.2�� 

 

The parameter values used in the simulation are obtained from the datasheet 
of the solar cell [21]. Input values of the fitting parameters necessary to 
implement the model using the equations are adopted and presented in Table 
2. 

Most of the literature cited in this paper are stressed the importance 
of studying the impact of temperature and irradiance changes on a solar cell. 
Therefore, it is necessary to investigate these phenomena. The cell used for 
validation of developed model is reported to have 30% conversion efficiency 
and it is tested at AM0 irradiance spectrum at a temperature of 28℃. In order 
to study the performance of the cell, model is simulated at the given 
parameters of the STC. Since the study investigates the performance of a 
Space grade cell, the temperature range selected is from ( 20 �� 100)℃ and 
the irradiance is increased from 200 �� 1367 �/�� in a step of 200.  

 

2.2 Modeling and Control of SEPIC 

SEPIC is a very attractive converter topology because of its very good 
electro-magnetic interference (EMI) profile since its input current is non-
pulsating. Another advantage of using SEPIC is that a simple switch gate drive 
can be used because the switch is connected to the ground of the circuit. That 
is, complexity in the gate drive circuit reduces since it has same ground node 
for the input and output. SEPIC has also a very suitable structure for battery 
storage applications in devices such as laptop and CubeSat [23-25]. Figure 4 
represents the schematic of a SEPIC showing all the active and passive 
elements used for the design of the 3.3V and 5.0V power supplies.  
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Figure 4. Circuit structure of a SEPIC 

SEPIC has two operational states being controlled by the duty cycle "d". 
Transfer relationship between input and output of an ideal SEPIC as shown in 
Equation (15) is given by 

��

���
 =

�

�� �
                                                                                                                            (15) 

It is modeled using state-space equations in current control mode where the 
inductor current ��1 never falls to zero. The equations of the model for 
switching periods ��� and (1  �)T� are obtained. The equations are for the 
two modes of operations -��� when �1, is on and (1  �)T� when the switch 
�1 is off. Figure 5(a) shows the ON state of the SEPIC while Figure 5(b) shows 
the OFF state. 

 

(a) 

 

(b) 

Figure 5. SEPIC states; (a) ON, (b) OFF 
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State-space model is defined as an equation in the form of 
[�]= [�][�]+ [� ][�]    
  
 
 (16) 
[�]=  [�][�]+ [� ][�]  (17) 
It is proceed to combine the two states of operation of the converter in to one 
non-linear equation using the state space averaging (SSA) technique in 
Equations (12) and (13) 
 
[�]= [��. �][�]+ [��. �][�], for 0 < � < ���  
 (18) 
[�]= [��. (1 �)][�]+ [��. (1 �)][�], for 0 < � < (1 �)�� (19) 
 
The duty cycle weighed-averaged model can be obtained as follows 
 
[�]= �[��. �]+ [��. (1 �)]�[�]+ �[��. �]+ [��. (1 �)]�[�] (20) 

[��]= �[��. �]+ [��. (1 �)]�[�]+ �[��. �]+ [��. (1 �)]�[�] (21) 

 
Equations (19) and (20) are combined as averaged large signal model 
(ALSM) derived in Equation (21). 
 

�

���

���

���

���

� =

� �

��
0 0 0

0 0
�

��
0

0
� �

��

� �

��
0

0 0 0
� �

� ��

�

���

���

���

���

�+

�

��

0
0
0

[��� ] (22) 

[��]= [0 0 0 1]�

���

���

���

���

�+ [0][��� ] (23) 

�

���

���

���

���

� =

� �

��

� �

��
0

� �

��

�

��
0 0 0

0 0
� �

��

�

��

� �

��
0

� �

��

� �

� ��

�

���

���

���

���

�+

�

��

0
0
0

[��� ] (24) 

[��]= [0 0 0 1]�

���

���

���

���

�+ [0][��� ] (25) 
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�� =

� �

��
0 0 0

0 0
�

��
0

0
� �

��

� �

��
0

0 0 0
� �

� ��

   (26) 

�� =

� �

��

� �

��
0

� �

��

�

��
0 0 0

0 0
� �

��

�

��

� �

��
0

� �

��

� �

� ��

 (27) 

[��]= [��]=  

�

��

0
0
0

 (28) 

[��]= [��]= [0 0 0 1] (29) 
[��]= [��]= [0]  (30) 

 
Equations (30) and (31) are a realization of Equations (19) and (20) by 
manipulating Equations (25)-(29). ALSM of the converters is stated below. 
 

�

���

���

���

���

� =

�

��

�� �

��
0

�� �

��

�� �

��
0

�

��
0

0
� �

��

� �

��

�� �

��

�� �

��
0

�� �

��

� �

� ��

. �

���

���

���

���

�+

�

��

0
0
0

. [��� ] (31) 

[��]= [0 0 0 1]�

���

���

���

���

� (32) 

 
To obtain the steady-state and small-signal models of the converter, 
derivative terms in Equation (30) are set to zero. All other variables are set to 
steady-state values. Therefore 
 � = 0, ���, ���, ���,���, = ���, ���, ���, ���, � = � , ��� = ��� , �� = ��. 
Steady-state model is expressed in Equations (32) and (33) 
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�

0
0
0
0

� =

�

��

� � �

��
0

� � �

��

�� �

��
0

�

��
0

0
� �

��

� �

��

�� �

��

�� �

��
0

� � �

��

� �

� ��

. �

���

���

���

���

�+

�

��

0
0
0

. [��� ] (33) 

[��]= [0 0 0 1]�

���

���

���

���

� (34)  

 
Small signal model of the converter is obtained using the ALSM and by 
applying a perturbation around the steady-state variables of the model 

where � = � + �� 

� = � + ���� = �� + ��� , ��� = ��� + ����  are inserted in Equation (32) as given 
in Equation (34), then, small signal model is extracted by multiplying the 
steady-state parts and disturbance around the steady-state. 
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 (35)  
 
Extracted complete small signal part is described in Equation (35), however, 
an output current ��term is added to the model for current control. 
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From (32), it can be obtained line-to-output transfer function of the plant  
��

���
  

while Equation (35) would produce three transfer functions for the control-

to-output 
���

��
 @ v��� = ı� = 0. Small signal line-to-output 

���

����
  @  d� = ı� = 0. 

Small signal output impedance 
���

��
 evaluated @ d� = v��� = 0. Equations (32), 

(33) and (34) are employed for the controller design. 
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2.2.1 Power Stage Design of SEPIC 

There are several methods of design calculations for SEPIC, however, 
design guides given by Texas Instruments in [26, 27] are adopted and design 
equations are presented as follows. V���� = 3.3V , V���� = 5.0V (output 
voltages), V��,��� = 3.0V, V��,��� = 4.2 (input voltage range), I���� =
2.5Amp , I���� = 2.0Amp , F�� = 1MHz  (switching frequency), V� = 0.3 
(forward voltage of Schottky diode). Equation (37) and (38) are the formulas 
for calculating the maximum and minimum duty cycles, respectively. 

 D��� =
�������

���,��� ��������
 (37) 

 D��� =
�������

���,��� ��������
 (38) 

 

Table 3. Circuit parameter values of SEPIC 

Components/Variables 3.3V Converter 5.0V converter 

�� = �� 
3.3 �� , 4. 7��  

selected 
3.0 �� , 4. 7��  

selected 
�� 10�� 10�� 
�� > 68�� > 42�� 
�� 0.3 � 0.3 � 

���� 3.3 � 5.0 � 
���,���  3.0 � 3.0 � 

���,���  4.2 � 4.2 � 

����  0.545 0.638 
����  0.461  0.557 
���� 13.6%  12.7%   
���� 2.5 ���. 2.0 ���. 

����,���  3.29 � 4.89 � 

����,���  3.34 � 5.05� 
 

2.2.2 Controller Design of SEPIC 

Figure 6 is the closed-loop control arrangement of the SEPIC with PI 
controller including the reference and output voltage. It is a feedback 
controller system used for the converters control. 

 

 
Figure 6. Closed-loop control scheme of the SEPIC 
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The controllers for 3.3V and 5.0V converters are designed from the 
state-space model equations. However, both SEPIC and controller transfer 
functions are fourth order equations, which makes them difficult to 
implement. SEPICs transfer functions are shown in Equations (39) and (40) 
for the two converters, respectively. 
 

������.�� =
�.��× �������.���× �������.���× ����

����.��× �������.���× ��������.���× ����� � �.���× ���� (39) 

 

������.�� =
�.���× �������.���× �������.���× ����

����.���× ������ �.���× ��������.���× �������.���× ���� (40) 

 

Output transfer functions are stated in Equations (41)-(44) for the two 
converters. 
 

���,�.�� =  
�.���× �������.���× ��������.���× �������.��× ����

����.���× �������.���× ��������.���× �������.���× ����    (41) 

 

����,�.�� =  
�.���× ������.���× ����

����.���× ������.���× ��� (42) 

 

���,�.�� =  
�.���× �������.���× ��������.���× �������.���× ����

����.���× �������.���× ��������.���× �������.���× ����   (43) 

 

����,�.�� =  
�.���× ������.���× ����

����.���× ������.���× ��� (44) 

 

3. SIMULATION RESULTS 
3.1 Triple-Junction PV Cell Simulation Results 

To evaluate the performance of the cell, main variables are considered 
as ���, ���, ���� , ���� , ���� , �� , and efficiency η. In addition, the effect of 

temperature change on the band gap energy is taken into account since it is a 
very important part of the model equations. All variables are temperature 
dependent which can greatly affect the ����  and ����  as can be seen from the 

I-V and P-V characteristics curves of the cell. 
 

Table 4. Comparison of datasheet and simulation results at STC 

Parameters Datasheet values Simulated values Percentage Error 
���� (��) 504.4 500.2 0.8%  

���� (��) 2411 2392 0.7%  

���� (�) 1.216 1.196 1.644%  

���(��) 2700 2659 1.518%  

���(��) 520.2 520.3 0.019%  
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Table 4 is a summary of the performance of the cell at STC. It can be 
seen from the simulated values that the model has valid results. Simulation 
results is verified with the given datasheet performance of the cell under 
same conditions. However, it is noticed that small increment in the short-
circuit current is occurred higher than the given value in the datasheet. 

I-V and P-V characteristics curves for the individual solar sub-cells at 
STC extracted from the results are shown in Figures 7 and 8. According to the 
curves, the "knee" of the curves exists in their maximum points, which are 
called as "maximum power points" for the individual sub-cells. The lower 
sub-cell Ge, middle sub-cell GaAs and top cell GaInP produce an open-circuit 
voltage of 0.2614 V, 1.352 V, and 1.289 V, respectively. The total sum of open-
circuit voltages goes up to 2.9024 V while it is 2.7 V in the datasheet, so, 
percentage error is around 7.5 %. Maximum power points are depicted in 
Figure 8.  

 

Figure 7. I-V characteristics curves of the sub-cells

 

Figure 8. P-V characteristics curves of the sub-cells 
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Figure 9 is the I-V characteristics curve of the solar cell plotted from the 
results. The shaded area represents the cell quality. Voltage at maximum 
power ����  is equal to 2.392 V and the current ����  stands at 0.5002 A. 

Maximum power ����  can be read from Figure 10 as 1.196 W while the 

calculated value from the datasheet is equal to 1.2 W. Simulation results 
show that the designed model is well-done. 

 

Figure 9. I-V characteristics of the triple-junction solar cell

 

Figure 10. P-V characteristic curve of the Triple-Junction solar cell at STC 

FF of the simulated cell (green area in Figure 9) is calculated in accordance 
with Equation (13) 
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�� =  
���� .����

���.���
   (45) 

FF is calculated to be 0.852 (85.2%). However, calculated FF is 0.8658 
(86.58%) and a percentage error is 1.59%. Efficiency calculated from 
Equation (14) as 

� =
�.���× �.�× �.����

����× �.������
× 100% = 29.0058%       

  

According to the datasheet, average efficiency at 1367�/�� is 29.5%. But, 
simulated efficiency from designed model is 29%. It can be confidently said 
that datasheet values and simulation results are mostly confirmed because 
the error is only 1.675%. The cell operating temperature has effect on the 
band gap. As the temperature increase, the band gap energy and open-circuit 
voltage decreases. The band gap Equation (5) is reproduced as 

 ��,�(��) = ��,�(�)
����

�

�����
  (46) 

By varying the operating temperature of the cell from (-20 to 100) ℃, band 
gap energy changes from (1.79 to 1.6499) eV in the top cell (GaInP), from 
(1.39 to 1.2597) eV in the middle cell (GaAs), and from (0.68 to 0.5708) in the 
bottom sub cell (Ge), in order. Table 5 exhibits the effect of temperature 
increase on the band gap energy of the triple-junction sub-cells. 

Table 5. Change of band bap energy with change in temperature (℃ with eV) 
 

 

Figure 11 is the I-V characteristics curve of the cell showing how the 
parameters ��� and ��� vary with increment in operating temperature from (-
20 to 100) ℃. The ���varies from 0.483 to 0.5743 A as the cell operating 
temperature is increased up to 100 ℃ from -20℃. On the other hand, the 
open-circuit voltage is varied from 2.682 V to 2.598 V between -20℃ and 
100℃.  

Tem

p 

������� (1.79) ������ (1.39)  ����(0.68) 

20 1.7132 1.3143 0.6174 

0 1.7033 1.3055 0.6100 

20 1.6932 1.2966 0.6024 

25 1.6906 1.2944 0.6005 

28 1.6890 1.2930 0.5993 

40 1.6827 1.2876 0.5947 

60 1.6720 1.2784 0.5868 

80 1.6611 1.2691 0.5788 

100 1.6499 1.2597 0.5708 
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Figure 11 . I-V characteristics of triple-junction solar cell under fixed irradiance and 
varying temperature 

 

Figure 12. P-V characteristics curve of triple-junction cells under varying 
temperature 

In Figure 12, it is presented the plot of the P-V characteristics curve under 
same conditions of temperature variations. The maximum voltage and 
maximum power are recorded as 2.306 V and 1.255 W at 100℃ while they 
are recorded as 2.446 V and 1.148 W at -20℃. Figure 13 and 14 demonstrate 
the I-V and P-V characteristics curves describing the performance of the cell 
under various irradiance conditions. 
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Figure 13. I-V curve of the cell under fixed temperature of 28℃ and varying 
irradiance 

 

Figure 14. P-V curve of the cell under fixed temperature of 28 degrees and varying 
irradiance 

3.2 SEPICs Simulation Results 
3.3 V and 5 V SEPIC topologies are simulated and the results are found 

to be quite satisfactory. Figure 15 and 16 present the output voltage and 
current curves of the 3.3 V and 5.0 V converters, respectively. All results are 
within the limits specified in Table 3. 
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Figure 15. The voltage and current curves of the 3.3V SEPIC 

 

Figure 16. The voltage and current curves of the 5V SEPIC 

Controller design for a fourth-order system is a very difficult task; therefore, 
a suitable way of reducing the models to second-order is employed. The step 
response of the original fourth-order and the reduced second-order models 
are compared. The reduced order models are able to represent the original 
models successfully. Figure 17 shows the step response of the systems both 
the original and the reduced system of the 3.3V converter. The new step 
response using the suitable PI coefficients is shown in Figure 18. 

Vout 

Iout 

Vout 

Iout 
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Figure 17. Closed loop original and reduced order step response of the 3.3V SEPIC 

 

Figure 18. Closed-loop step response of the 3.3V SEPIC 

For the 5.0V SEPIC, Figure 19 and 20 show the step response of both the 
calculated and the tuned PI controller. 
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Figure 19. Tuned step response of the closed loop 5.0V converter 

 

Figure 20. Step response of closed-loop 5.0V converter 

4. DISCUSSION 

Voltage and current output characteristic of the converters are quite 
promising. In this context, to show the performance of the designed system, a 
comparison study is carried out in Table 6 with the output voltage profiles of 
the two famous satellite kits manufacturers called as GOMspace and 
Endurosat. 
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Table 6. Comparison of converter output voltage with those of manufacturers 

Voltage (V) Designed Converter Endurosat [28] GOMspace [29] 

3.3 3.294 3.306 3.3 3.45 3.29 3.45 

5.0 4.994 5.006 4.88 5.15 4.89 5.05 

Comparison in Table 6 gives confidence to accept the result of designed 
converters modeling, controller design and simulation. However, it is worthy 
of note that the converter design are performed with ideal components, 
therefore, it cannot be drawn final conclusions for their superiority over 
others. Further studies and analysis should be performed. 

5. CONCLUSION 

An EPS for a conceptual 1U CubeSat mission has been designed by 
thorough evaluation of performance of the building blocks of the EPS. The 
functionalities and requirements of the EPS have been clearly spelt out from 
the onset. Mathematical modeling of the basic elements of the EPS has been 
provided and design parameters have been also obtained. Triple-junction 
solar PV cell results have been validated by comparing with the datasheet 
values. Analysis and performance assessment of designed 3.3 V and 5 V SEPIC 
have been conducted with good results. Output voltages of the both 
converters have been compared to the reported similar converters by leading 
manufacturers of such power supplies. Another important conclusion is that 
similar CubeSat mission EPSs can be developed without necessarily having to 
conduct extensive literature survey thanks to this work. 
 

REFERENCES 

[1]  Cal Poly SLO., CubeSat Design Specification Rev. 12, The CubeSat 
Program, California State Polytechnic University (California), 2009. 

[2]  Sellers J.J., Astore W.J., Giffen R.B. and Larson W.J., Understanding 
Space: an Introduction to Astronautics, McGraw Hill (New York), 3rd 
edition, 2000. 

[3]  Craig Clark, Alejandro Lopez Mazarias, Power System Challenges for 
Small Satellite Missions, Proceedings of the 2006 Small Satellites, 
Systems and Services Symposium, D. Danesy, Ed. The Netherlands: ESA, 
2006. 

[4]  Sun C.S. and Juang J.C., Design and Implementation of a 
Microsatellite Electric Power Subsystem, Journal of Aeronautics, 
Astronautics and Aviation, Series A, 44(2), pp. 67-73, 2012. 

[5]  Jacobsen L.E., Electrical Power System of the NTNU Test Satellite, 
Master Thesis, Norwegian University of Science and Technology, 2012. 

[6]  Nishioka K., Takamoto T., Agui T., Kaneiwa M., Uraoka Y. and Fuyuki T., 
Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under 
concentrated light by simulation program with integrated circuit 
emphasis, Japanese Journal of Applied Physics, 43(3R), 882, 2004. 



 Volume 7, No. 1, June 2019 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

299 

[7]  Yuya Sakurada, Yasuyuki Ota and Kensuke Nishioka, Simulation of 
Temperature Characteristics of InGaP/InGaAs/Ge Triple-Junction 
Solar Cell under Concentrated Light, Journal of Applied Physics, 
50(4S), 04DP13, 2011. 

[8]  Dida A.H. and Bekhti M., Study, modeling and simulation of the 
electrical characteristic of space satellite solar cells, 2017 IEEE 6th 
International Conference on Renewable Energy Research and 
Applications (ICRERA), pp. 983-987, IEEE, 2017. 

[9]  Rezk H. and Hasaneen E.S., A new MATLAB/Simulink model of triple-
junction solar cell and MPPT based on artificial neural networks 
for photovoltaic energy systems, Ain Shams Engineering Journal, 6(3), 
pp. 873-881, 2015. 

[10]  Das N., Al Ghadeer A. and Isla, S., Modelling and analysis of multi-
junction solar cells to improve the conversion efficiency of 
photovoltaic systems, 2014 Australasian Universities Power 
Engineering Conference (AUPEC), pp. 1-5, IEEE, 2014. 

[11]  Hussain A.B., Abdalla A.S., Mukhtar A.S., Elamin M., Alammari R. and 
Iqbal A., Modelling and simulation of single-and triple-junction 
solar cells using MATLAB/SIMULINK, International Journal of 
Ambient Energy, 38(6), pp. 613-621, 2017. 

[12]  Philipps S.P., Guter W., Welser E., Schöne J., Steiner M., Dimroth F. and 
Bett A.W., Present status in the development of III–V multi-junction 
solar cells, Next Generation of Photovoltaic, Berlin, Heidelberg, pp. 1-21, 
Springer, 2012. 

[13]  Bett A.W., Dimroth F., Guter W., Hoheisel R., Oliva E., Philipp, S.P., 
Schöne J., Siefer G., Steiner M., Wekkeli A. and Welser E., Highest 
efficiency multi-junction solar cell for terrestrial and space 
applications, Space, 25(25.8), pp. 30-6, 2009. 

[14]  Yunus Emre Yağan, Kadir Vardar and Mehmet Ali Ebeoğlu, Modeling 
and Simulation of PV Systems, IOSR Journal of Electrical and 
Electronics Engineering (IOSR-JEEE), 13(2), pp. 1-11, 2018. 

[15]  Segev G., Mittelman G. and Kribus A., Equivalent circuit models for 
triple-junction concentrator solar cells, Solar Energy Materials and 
Solar Cells, 98, pp. 57-65, 2012. 

[16]  Thakur M. and Singh B., A MATLAB/Simulink Model of Triple-
Junction Solar Cell and MPPT Based on Incremental Conductance 
Algorithm for PV System, International Journal of Engineering 
Research and Applications, 5(9), pp. 92-95, 2015. 

[17] Dey B.K., Khan I., Mandal N. and Bhattacharjee A., Mathematical 
modelling and characteristic analysis of Solar PV Cell, 2016 IEEE 7th 
Annual Information Technology, Electronics and Mobile Communication 
Conference (IEMCON), pp. 1-5. IEEE, 2016. 

[18] Sarkar M.N.I., Effect of various model parameters on solar 
photovoltaic cell simulation: A SPICE analysis. Renewables: Wind, 
Water, and Solar, 3(1), pp. 13, 2016. 



Volume 7, No. 1, June 2019 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

300 

[19]  3G30C AZURSPACE Triple-Junction Solar Cell, Available at: 
http://www.azurspace.com/images/products/0004148-00-
01_DB_GBK_80%C2%B5m.pdf (Accessed 21.02.2019) 

[20]  Theristis M. and O’Donovan T.S., Electrical-thermal analysis of III–V 
triple-junction solar cells under variable spectra and ambient 
temperatures, Solar Energy, 118, pp. 533-546, 2015. 

[21]  Colasanti S., Nesswetter H., Zimmermann C.G. and Lugli P., Modeling 
and parametric simulation of triple junction solar cell for space 
application, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 
pp. 1784-1789, IEEE, 2014. 

[22] Bimenyimana S., Asemota G.N.O. and Lingling L., Output Power 
Prediction of Photovoltaic Module Using Nonlinear Autoregressive 
Neural Network, Power, 31, 12, 2014. 

[23]  Priya S. P., Radhika A., and Vinothini T. D., MPPT and SEPIC Based 
Controller Development for Energy Utilisation in CubeSats, 2012 
Annual IEEE India Conference (INDICON), pp. 143-148, IEEE, 2012. 

[24]  Waghulde D., Kapgate N., Pisal S., Papal S., Gajare T., Rathod B., ... & 
Phanse A., Simulation, Design and Implementation of Various MPPT 
Systems for Micro Cube-Satellite Application, 2016 Second 
International Innovative Applications of Computational Intelligence on 
Power, Energy and Controls with their Impact on Humanity (CIPECH), pp. 
80-84, 2016. 

[25]  Li N. Digital control strategies for DC/DC SEPIC converters towards 
integration, PhD Thesis, Lyon, INSA, 2012. 

[26]  Zhang, D., AN-1484 Designing a SEPIC Converter, Texas Instruments, 
2006. 

[27] Jeff F., Designing DC–DC Converters Based on SEPIC Topology, 
Analog Instrumentation Journal, Texas Instruments, Web. 12, 2016. 

[28]  ENDUROSAT CubeSat Structure, Available at: 
https://www.endurosat.com/products/#power-modules. (Accessed 
21.02.2019) 

[29]  GOMspace Structure, Available at: 
https://gomspace.com/Shop/subsystems/power-supplies/nanopower- 
p31u.aspx (Accessed 21.02.2019) 

 


