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Abstract 
 
This paper presents an application of optimal control theory in multi 
sources PS by considering natural choice of power plants 
participating in AGC scheme. However, for successful operation of 
large power system, the natural choices of generation suitable for 
AGC system are hydro and thermal power plants since gas and 
nuclear power plants are rarely participates in the AGC scheme. 
Therefore, this work presents design and implementation of 
proportional integral (PI) structured optimal AGC controller in the 
presence of hydro and thermal power plants by using state vector 
feedback control theory. Moreover, various case studies are 
identified to obtain: (i) Comparison of optimal value of cost function 
for various case studies, (ii) Closed loop system stability margin 
through patterns of eigenvalues and (iii) System dynamic 
performance. Further, results have shown that dynamic performance 
of PS with optimal AGC controller is outstanding over those obtained 
with genetic algorithms (GAs) tuned PI structured AGC controller. 
Besides, with optimal AGC controller, optimal value of cost function, 
increased in system closed loop stability margin and outstanding 
dynamic performance of PS have been found when lessening in hydro 
generation is replaced by generation from thermal power plants for 
various case studies under investigation. 

  
Keywords: Multi Sources; AGC; Optimal Controller; Eigenvalues; 
Dynamic Performance. 

  
 

1. INTRODUCTION 
The PS control areas are grouped to operate in interconnected fashion 

for providing reliable electric supply to the consumers at specified voltage 
and frequency. These parameters are maintained at desired level of the 
specified value, which are necessary for minimum stresses in the PS also for 
good health of the consumer equipments by implementing AGC scheme in 
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power system. However, AGC adjust the output power of the multiple power 
plants for removing of small changes or deviations (up to 5%) in the load.  

Many AGC studies [1-47] have been accomplished by power researcher 
for designing and performance analysis of AGC controller for single/multi 
area power systems. After the novel work of Elgerd and Fosha [1-2], a wide 
range of AGC publications have been appeared for addressing the problem of 
AGC as reviewed in [4-7]. Many meta-heuristic optimization algorithms such 
as; Artificial Neural Network [8-10], Fuzzy Logic [11-15], Genetic Algorithm 
[15-23], Particle Swarm Optimization [24-26], Bat Optimization [27-28], 
Bacterial Foraging Optimization [29-31], Artificial Bee Colony [32], 
Gravitational Search Algorithms [33-34] and imperialist competitive 
algorithms [47], were also developed to demonstrate the effectiveness of AGC 
controllers in power system. 

But the above meta-heuristic algorithms [8-34] consume larger 
simulation time and sometime give unsatisfactory solution to the AGC design 
problem in power system. In power system, tuning of AGC controller is a 
multi-input and multi-output design problem which cannot be solved by 
applying classical control theory in an effective manner as well as these 
controllers are generally introduced relatively larger oscillations and 
enormous settling time for transient period.  Therefore, first attempt to apply 
modern/optimal control theory for designing of AGC controller has been 
proposed in [1-2] for 2-area PS by considering non reheat types of thermal 
turbines.  Since then many research articles [35-46] on AGC have been 
appeared by using optimal control theory. The enhanced system transient 
performance and higher system stability margins in PS have been witnessed 
in [35-46] with optimal AGC controllers rather than using conventional AGC 
controllers. Moreover, these optimal AGC controllers are also found to be 
very robust, cheaper and simple in design [35-46]. In majority of the works, 
the AGC studies were demonstrated by considering either hydro or thermal 
power units in each connected areas. Depending upon the availability of 
energy resources a control area practically may have many power plants 
such as hydro, thermal, gas, nuclear etc. By considering this practical 
situation many AGC studies [15, 18, 22-26, 36-37, 46] were carried out by 
assuming diverse sources based power units in each connected areas. 

Nuclear units are used to provide partial the base load power due to 
higher efficiency and gas units are typically ideal for supplying peak demands 
only. Therefore, gas and nuclear power plants seldom play any role by 
participating in AGC schemes in interconnected PS. Therefore, the natural 
choices of power generation for AGC are hydro and thermal power plants to 
operate the PS successfully. But no work has been witnessed in the 
literatures so far by considering the above natural choice of power plants 
(hydro and thermal) for participating in AGC scheme by adapting optimal 
control theory. Therefore, in this research work, the following AGC studies 
are proposed by incorporating above power units in each connected areas:-       
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• To develop transfer function model of 2-area interconnected PS by 
considering hydro and thermal power generation in each area 
interconnected by AC tie line. 

• To find the design of optimal gain matrix [�*] for the above PS model 
using optimal control theory for various case studies based upon share of 
power generation. 

• To investigate PS stability margin by using patterns of closed-loop 
eigenvalues for PS under consideration. 

• To compare dynamic performance of the PS with optimal AGC 
controller and GAs based PI structured classical controller. 

• To obtain dynamic performance of the PS with optimal AGC controller 
for 1% step load disturbance in the connected areas for various case studies 
under consideration.  
 
2. Model of PS 

The transfer function model of hydro and thermal power plants has 
been reported in many literatures [1-46]. However, in this work, a 2-area 
interconnected PS having hydro and thermal power units in each connected 
areas with equal generation capacities is developed as shown in Fig. 1. These 
areas are interconnected by AC tie line for exchanging power between 
control areas to get the operation benefits.  

 

Fig. 1: Transfer function model of PS with natural choice of power plants.  

The symbol has their usual meaning as given in [1-2, 43]. In this 
model, not only all the thermal power plants are lumped together and shown 
by a single thermal power plant dynamics but hydro power plants are also 
lumped together represented by respective single hydro power plant 
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dynamics [20-23, 31, 33, 35, 43]. There is no mismatch between generation 
and load for PS model operating under normal steady state conditions.  
Therefore, the hydro and thermal power generations in area-1 is given by; 

1G1h1Gh PKP 
 

(1) 

1G1t1Gt PKP 
 

(2) 

Under nominal generation loading, the total power generated (PG1) in 
area-1 is given by: 

1Gt1Gh1G PPP   
(3) 

Putting the value of PGh1and PGt1 from equations (1)-(2), then, value of 
PG1 is given by 

1G1t1G1h1G PKPKP   
(4) 

1KK 1t1h   
(5) 

The above equation is relation between generation sharing factor also 
known as participation factor of hydro and thermal units in area-1, however, 
similar relation for area-2 is given by; 

1KK 2t2h   
(6) 

The deviation in power generation; PG1 can be formulated using (3) 
to obtain transient responses for small load perturbation in area-1; 

1Gt1Gh1G PPP   
(7) 

Similarly for control area-2, PG2 is given by: 

2Gt2Gh2G PPP   
(8) 

 
3. STATE VARIABLE MODEL OF PS 

The PS model shown in Fig. 1 may be formulated in state variable form 
with the following differential equations; 

dPUBXAX
dt

d
  (9) 

UDXCY 
 

(10) 

Where, X, U, Pd and Y are the state, control, disturbance and output 
vectors respectively. However, A, B, C and Г are system input, system control, 
and system output and disturbance matrices of appropriate dimensions 
respectively. Each state shown in Fig. 1 is represented by a set of differential 
equation. The transfer function model of reheat thermal turbine and the 
speed governing mechanism of hydro turbine have been modified or 
rewritten to account for the term in the numerator. The modified the transfer 
function model of reheater-1, may be represented by following equation; 

r1

r1
r1

r1

r1r1

sT1

K1
K

sT1

TsK1









 (11) 
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The transfer function of hydro turbine-1 may be represented by 
following equation;  

1w1w

1w

sT2

6
2

sT5.01

sT1







 (12) 

The transfer function of governor of hydro turbine-1 may be 
represented by following equation;  

)
sT1

T

T
1

T

T
(

sT1

1

sT1

sT1

sT1

1

1GH

GH1

R1

1GH

1R

1RH1GH

1R

1RH 













 

(13) 

Similarly transfer function of reheater-2 and hydro turbine-2 may be 
represented by following equations:- 

r2

r2
r2

r2

r2r2

sT1

K1
K

sT1

TsK1









 (14) 

2w2w

2w

sT2

6
2

sT5.01

sT1







 (15) 

2GH

GH2

R2

2GH
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2RH2GH

2R

2RH sT1

T

T
1

T

T

sT1

1

sT1

sT1

sT1

1




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








 

(16) 

The model of PS taking into examination is developed in Fig. 2 with 
consideration of intermediate states ( PGti1, Xhi1, PGhi1, PGti2, Xhi2 and 

PGhi2,) and using equations (11)-(16).  

  
Fig. 2: Reformulated model of PS with natural choice of power plants. 
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Besides, X, U and Pd vectors considered for the above PS model are as 
follows; 

X=[x1  x2   x3   x4   x5   x6   x7   x8   x9   x10   x11   x12   x13   x14   x15   
x16   x17]T 

(17) 

U=[ PC1   PC2]T
 (18) 

Pd=[ Pd1   Pd2]T (19) 

 However, following differential equations are derived to obtain the A, 
B, C and Г matrices to represent PS model into state variable form; 

2
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dt
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(20) 
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1413116 xx)x(
dt

d


 

(35) 

152141217 xx)x(
dt

d


 

(36) 

Now matrices A, B, C and Г are obtained by arranging the above state 
space equations (20)-(36). These matrices are given in Appendix-A. These 
matrices are utilized to obtain [*] for PS model shown as in Fig. 2. 

 
4. DESIGNING OF OPTIMAL AGC CONTROLLER 

The design of optimal control signal U* for state variable equations (9)-
(10) is such that to minimize cost function (J), also known as performance 
index, which is given by the following equations; 

]dtURUXQX[
2

1
J

TT

0

 


 

(37) 

XU **


 

(38) 

 The optimal control signal (U*) for above equation is acquired by 
adapting state vector feedback control theory [35-45], which is given by; 

XPBRU T-1*


 

(39) 

 Where; P represents positive definite symmetric matrix of compatible 
dimensions. By comparing (38)-(39), [*] is now given by [35-45]; 

PBR T-1* 

 

(40) 

 The derivation of above [*] has been given in references [1-2, 15, 35-
45]. 

 
5. SYSTEM DATA AND CASE STUDIES 

In this work, various case studies are proposed to examine transient 
performance of PS model with optimal AGC controller based upon sharing 
factors of hydro and thermal units. These case studies are identified in Table 
1. 

Table 1. Various case studies 
Case 
study 
no. 

Sharing factor in area-1 Sharing factor in area-2 

Kt1 Kh1 Kt2 Kh2 

1 0.2 0.8 0.2 0.8 
2 0.5 0.5 0.5 0.5 
3 0.8 0.2 0.8 0.2 
The system parameters for ith area connected to jth area (i = 1 and j = 

2) for PS model under examination are identified in Table 2. 
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Table 2. System parameters  

PS Parameters and its values Hydro and thermal turbine 
parameter and its values 

Pri 2000 MW Tgi 0.08 s 
Hi 5.0 MW-s/MVA Tti 0.30 s 
Fr 60.0 Hz Tri 10.0 s 
Tij 0.0433  Kri 0.3 
Ri 2.4 Hz/pu MW TRHi 31.25 s 
βi 0.4249 puMW/Hz TRi 5.000 s 
Di 8.33x10-3 pu MW/Hz TGHi 0.513 s 
αij -1.0 Twi 1.500 s 
The above system parameters given in Table 2 are utilized to design 

optimal AGC controller in the next section. 
 

6. SIMULATION OF RESULTS 
The PS model in the form of state space representation as shown in Fig. 

2, by using A, B, C and D matrices is simulated at the platform of standard 
MATLAB software. The [Ψ*] with associated J* and system closed-loop 
eigenvalues are determined by using above software, which are given in 
Tables 3-4. The optimal gains of GAs tuned PI structured AGC controller [16-
17] is given in Table 5. The dynamic performances of PS with natural 
regulation, classical GAs controller and optimal controller for +1% step load 
disturbance in area-1 are shown in Fig. 3. The dynamic performances with 
optimal PI controller for various case studies are compared in Figs. 4 & 5 for 
+1% step load disturbance in area-1 & 2, respectively. 

 
Table 3. [*] and J*for various case studies 

Case 
Studies 

Elements of [*] J* 

1 3.4364    0.3601    0.4555    3.9246    3.8172   39.1812    0.8036    0.0307    0.0044    1.3334   -
0.6349   -6.8952    0.1748   -6.6306    1.0791    0.9661   -0.2582 

1.1689    0.0383   -0.0028    1.6166    1.4699   12.4574    2.1764    0.8254    0.1073    3.6640   -
1.1424  -11.7444    0.3728    1.2029    1.6049    0.2582    0.9661 

6731.3 

2 4.6778    0.5420    0.5129    1.8467    0.3555    4.2634    0.5920    0.0215    0.0030    0.2971    
0.0815   -0.0169    0.6400   -3.4126    0.3301    0.9769   -0.2135 

1.4290    0.0564    0.0067    0.6391    0.7904    5.8599    2.9965    0.8911    0.1131    1.7678   -
1.2965  -14.0100    0.0975    0.2594    1.5989    0.2135    0.9769 

2972.8 

3 5.2785    0.6711    0.5370    0.6577   -0.1009   -0.3603    0.4423    0.0133    0.0017    0.0561    
0.0463   -0.1423    0.7790   -2.2567    0.1364    0.9905   -0.1377 

1.1387    0.0630    0.0123    0.1645    0.1504    0.4567    3.3098    0.9287    0.1143    0.5271   -
0.5020   -5.7577    0.0599    0.0599    1.3833    0.1377    0.9905 

2728.5 
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Table 4. Patterns of PS closed-loop eigenvalues 
Sr. No. Case study-1 Case study-2 Case study-3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

-17.5656 
-13.2824 

-0.2398 + 1.8289i 
-0.2398 - 1.8289i 

-1.1173 
-0.5420 + 0.5373i 
-0.5420 - 0.5373i 

-0.4051 
-0.2435 

-0.1388 + 0.0653i 
-0.1388 - 0.0653i 

-0.0312 
-12.1308 
-4.1283 
-2.7997 
-2.2132 
-0.0659 

-17.5808 
-13.5788 

-0.3503 + 1.8287i 
-0.3503 - 1.8287i 

-1.1375 
-0.7524 + 0.6215i 
-0.7524 - 0.6215i 

-0.4312 
-0.2883 

-0.1838 + 0.0946i 
-0.1838 - 0.0946i 

-0.0466 
-11.7654 
-3.9711 
-2.6304 
-2.2063 
-0.0313 

-17.5964 
-13.7844 

-0.5790 + 1.7912i 
-0.5790 - 1.7912i 
-1.0746 + 0.5523i 
-1.0746 - 0.5523i 

-1.2370 
-0.4427 
-0.3094 

-0.2121 + 0.1117i 
-0.2121 - 0.1117i 

-0.0361 
-11.4603 
-3.7490 
-2.4144 
-2.0984 
-0.0313 

 

Table 5. Gains of GAs controller 
Gains of Controller in Area-1 Gains of Controller in Area-2 

kp1 ki1 kp2 ki2 
0.0001 0.5022 0.0001 0.5023 
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Fig. 3: Dynamic responses of PS for +1% step load disturbance in area-1; (a) F1 Vs. 
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Fig. 4: Dynamic responses of PS with 1% load disturbance in area-1 for case studies 
1-3 (a) F1 Vs. Time, (b) F2 Vs. Time, (c) Ptie12 Vs. Time, (d) PG1 Vs. Time and (e) 

PG2 Vs. Time 
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Fig. 5: Dynamic responses of PS with +1% step load disturbance in area-2 for case 

studies 1-3; (a) F1 Vs. Time, (b) F2 Vs. Time, (c) Ptie12 Vs. Time, (d) PG1 Vs. Time 
and (e) PG2 Vs. Time. 
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the negative half of the complex s-plane. Besides, magnitudes corresponding 
to closed-loop eigenvalues given at serial number 1-12 and 13-17 are 
towards considerably increasing and decreasing trends respectably. But 
closed-loop system stability is improved more due to more significantly 
increment in the negative part of the eigenvalues of state variables 
corresponding to serial number (1-12) rather than eigenvalues of the other 
state variables as given in Table 4. 

It has been observed from Figs. 3 (a)-(e) that in the condition of 'With 
Primary Controller', the system is unable to control the steam/hydro speed 
governors in the desired manner to mitigate the step load disturbance. This 
infers that there is need of supplementary control to mitigate instantaneous 
load disturbance in a desired manner.  When supplementary control using 
GAs tuned PI controller is implemented in the power system; the system is 
able to control the steam/hydro speed governors in the desired manner for 
mitigating the load disturbances. But larger oscillations and enormous 
settling time are associated in the dynamic performance responses for PS 
with implementation of above GAs controller.   

It has been inferred from Fig. 3 that the transient performance of 
optimal AGC controller is outstanding over GAs tuned PI structured 
controller. It has also been demonstrated that the optimal AGC controller is 
capable to mitigate load disturbance by adjusting setting of the speed 
governors to the hydro and thermal turbines located in respective control 
areas. The implementation of above optimal AGC controller demonstrates a 
fruitful improvement in settling time, reduction in number of oscillatory 
modes in comparison to GAs tuned AGC controller for power system. 
Therefore, optimal AGC controller is found to be far superior over GAs tuned 
PI structured AGC controller.  

It has been observed from Fig 4 that the transient responses of ΔF1, ΔF2 
and ΔPtie12 gets improved with optimal AGC controller for case study 2 in 
comparison to case study 1 due to increased part of generation share by the 
thermal plant in case study 2. However, further improvements of system 
dynamic of above states have been seen for case study 3 in comparison to 
other case studies. This inferred that system dynamic responses of these 
states have been performed outstanding when a huge reduction in the share 
of hydro generation and it is replaced by generation from thermal power 
plants.  

It has been found from the responses shown in Fig. 5 that the final 
deviation in power generations i.e., ΔPG1and ΔPG2 are setting to the value of 
0.01 pu MW and 0.00 pu MW, respectively, which is equal in magnitude to the 
+1% step load disturbance. This trend also presents that the disturbed area is 
capable to execute its responsibility for mitigate the load disturbance in its 
own area by generating power equal to load disturbance due to the presence 
of optimal AGC controller in the PS.  
It has been observed with optimal AGC controller, the lower value of cost 
function, increased in closed loop system stability margin and outstanding 
dynamic performance of PS have been observed when subject to the 
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reduction in share of hydro generation is replaced by thermal power plants 
for tracing of case study 1 to 3 via 2. Moreover, opposite trend of results have 
been observed for moving towards case study 3 to 1 via 2 but an appreciable 
improvements in reduction of air pollution is also obtained when thermal 
generation is replaced by hydro generation. Similar performance of the PS 
have been obtained with optimal AGC controller for +1% instantaneous load 
demand in area-2 as shown in Figs. 5 (a)-(e). 
 
8. CONCLUSION 

This paper presents an application of optimal control theory to a 2-area 
PS by considering natural choices of power plants participating in AGC 
scheme. The 2-area multi source PS connected by AC tie line with hydro and 
thermal generation has been taken for state space modeling. However, with 
optimal AGC controller, lower value of cost function, increased in closed-loop 
system stability margin and an outstanding system dynamic responses have 
been observed when the share of hydro power generation is reduced and it 
has been replaced by thermal power generation by conducting various case 
studies. It has been observed that, when optimal PI structured AGC scheme is 
implemented in PS, the performance of PS is found to be better than those 
obtained with GAs controller. It has also been observed that when optimal 
AGC scheme is implemented in PS, the disturbed area is responsible to meet 
load disturbance by generating power, which is equal to the load disturbance.  
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The matrices C, Q and R are considered to be an identity matrix of 
appropriate dimensions. 


