
EMITTER International Journal of Engineering Technology
Vol. 6, No. 1, June 2018

ISSN: 2443-1168

Copyright © 2018 EMITTER International Journal of Engineering Technology - Published by EEPIS
92

An Embedding Technique for Language-Independent
Lecturer-Oriented Program Visualization Tool

Lisan Sulistiani, Oscar Karnalim

Faculty of Information Technology
Maranatha Christian University

lisans1601@gmail.com, oscar.karnalim@it.maranatha.edu

Abstract

Program Visualization (PV) tool aims to help novice programmers to
learn how a particular program works through interactive and
descriptive visualization. However, most of the tools are language-
dependent: they use either a language-dependent debugger or a
language-dependent code to generate visualization. Such dependency
may become a problem when a program written in new
programming language is incorporated. Therefore, this paper
proposes an embedding technique to handle given issue. To
incorporate new programming language, it only needs five language-
dependent features to be set: compile command, run command,
library-import instruction set, file-writer function-declaration
instructions, and file-writer function-invocation instruction. In
general, our proposed technique works in threefold: embedding
some statements to target program, generating visualization states
by running the program with console commands, and visualizing the
given program based on generated visualization states. According to
our evaluation, proposed technique is able to incorporate program
written in any programming languages as long as those languages
provide required language-dependent features. Further, it is practical
to be used since it still has the benefits of conventional PV despite its
language-independent behavior.

Keywords: embedding technique, language independence, program
visualization, educational tool, computer science education

1. INTRODUCTION
As the demand of programmer is increased, programming becomes a

promising skill to be learned [1]. However, learning programming is not a
trivial task; some programming concepts are either abstract or difficult to be
taught [1], [2]. Consequently, computer-based educational tools have been
developed [3]. These tools are expected to provide clearer understanding for
novice programmers.

Program Visualization (PV) tool is a kind of computer-based
educational tool that is mainly focused on visualizing program data and
process [3]. It could help novices to learn how a particular program works in

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

93

debug-like fashion through interactive and descriptive visualization.
According to several works [4]–[8], PV tool helps novice programmers in
positive manner. It provides clearer view of data and process flow from a
particular program run.

Nevertheless, to our knowledge, most PV tools are not designed to
incorporate new programming language with ease. They use either a
language-dependent debugger or a language-dependent code to generate
visualization. Such generation mechanism takes a considerable amount of
effort while a new programming language is incorporated. This paper
proposes an embedding technique to cover given issue. Instead of relying to
language-dependent features, it separates those features from the
independent ones and makes them modifiable by users. It is important to
note that separating those features require the user to have technical
knowledge about target programming language when using given PV. Hence,
we encourage this technique to be used only by lecturers for teaching
programming material to novice programmers; lecturers are assumed to
have sufficient technical knowledge to use proposed technique.

2. RELATED WORKS

When perceived based on the involvement of visualization, educational
tool for learning programming can be classified into two categories: standard
educational tool and Software Visualization (SV) tool [3]. Standard
educational tool enhances user understanding in a conventional way. It only
automates lecturer’s teaching mechanism without providing a specific
emphasis on visualization. The works proposed in [9]–[11] are several
examples which fall into this category. On the other, SV tool enhances user
understanding with a strong emphasis on visualizing software data and
process [3]. Such tool works in debug-like fashion where user can see how
the program works in detail. In general, SV can be further classified into two
sub-categories: Algorithm and Program Visualization tool.

Algorithm Visualization (AV) tool is focused on visualizing high-level
representation of program (i.e., algorithm). It is frequently used to learn well-
known algorithms such as searching and sorting [12]. By providing
algorithmic knowledge through AV, user is expected to be capable for writing
a program related to it. Several examples of AVs are VisuAlgo [13], AP-ASD1
[14], AP-SA [15], and AP-BB [16]. In addition to the AV tools, several
supportive tools for developing and maintaining the AV tools are also
proposed. Three samples of such tools are JHAVE [17] (i.e., an environment
for developing AV tool), JSAV [18] (i.e., a Javascript library for developing AV
tool), and AlgoViz [19] (i.e., a digital library for AV tools).

Program Visualization (PV) tool is focused on visualizing direct
representation of program (i.e., source code). The salient difference between
PV and AV is that PV is usually featured with numerous technical information
such as variable type and memory allocation. Several examples of PV tools
are:

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

94

a. PythonTutor [20], a web-based PV which originally focuses on
visualizing Python program.

b. Omnicode [21], an extended version of PythonTutor that incorporates
live programming environment.

c. SRec [22], a PV specifically focused on teaching recursion.
d. Jelliot 3 [23], a PV specifically focused on visualizing Java program.
e. JIVE [24] , a PV visualizing Java program in either an object or a

sequence diagram.
f. VILLE [25], a PV which, at some extent, enables user to incorporate

new programming language with ease.
Among aforementioned PV tools, VILLE [25] is the only tool which

mitigates effort required to incorporate new programming language. Instead
of providing a dedicated debugger or a dedicated code to generate
visualization toward new programming language, it only asks the user to
provide a syntax equivalence dictionary between Java and target language
(Java is VILLE’s default target programming language). Even though such
technique enables language independence, we would argue that it is
impractical to use; providing translation for all syntaxes is exhaustive. In
addition, not all syntaxes in target programming language have their
equivalent form in standard Java syntaxes (e.g., list comprehension in
Python). Hence, a simpler language-independent technique is required.

3. ORIGINALITY

This paper proposes an embedding technique for language-
independent PV tool. It is simpler than a technique proposed in [25] in terms
of incorporating new programming language. It only needs five language-
dependent features to be set: compile command, run command, library-
import instruction set, file-writer function-declaration instructions, and file-
writer function-invocation instruction. In general, our proposed technique
works in three phases: embedding some statements to target code,
generating visualization states by running the code with console commands,
and visualizing given code based on generated visualization states. It is true
that such technique will cause several limitations. However, these limitations
are acceptable under several circumstances. We will discuss the detail of
limitations and circumstances further on system design.

4. SYSTEM DESIGN

Generally speaking, SV visualization can be generated in either a direct
or an indirect interaction with programming language compiler. Direct
interaction means that software data and process are visualized while the
software is running. It is usually implemented by utilizing a particular
debugger (e.g., pdb, a Python debugger that is used in PythonTutor [20] and
Omnicode [21]). In contrast, indirect interaction means that software data
and process are visualized after the software has been completely run. It is
usually implemented by utilizing predefined code to capture visualization

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

95

state on given software. An example SV which utilize this technique is AP-
ASD1 [14]. It generates all visualization states before visualization by
embedding predefined code to both target program and the SV itself. Our
technique aims to mitigate language dependency on SV. Hence, the latter
technique will be used. It is implemented in our technique in three phases:
embedding, generation, and visualization phase. The relation, input, and
output of those phases can be seen on Figure 1.

Figure 1. Phases from proposed indirect technique. It consists of three phases:
embedding, generation, and visualization phase. The first two phases prepare

visualization states that will be used on the last phase.

Embedding phase takes an arbitrary source code (i.e., program),

library-import instruction set, file-writer function-declaration instructions,
and file-writer function-invocation instruction as its input. Afterwards, it will
embed the last three mentioned features into desired position on target
source code, resulting embedded source code as its output. The detail of
these features can be defined as follows:

a. Library-import instruction set is a bunch of instructions to import
required library for writing variable states and line number to a text
file.

b. File-writer function-declaration instructions represents a function
declaration about writing a visualization state to a text file in
predefined format. This function should accept a line number of
executed instruction as its parameter and write it along with all
visualized-to-be variables to a text file (for convenient access, those
variables should be stored as global variables). Each variable written
on resulted text file should be separated with a newline where
variable value will be placed right after the variable name, separated
by a colon (":"). The line number of executed instruction is stored in

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

96

similar fashion as variables except that its variable name should be
referred as linenumber.

c. File-writer function-invocation instruction is an instruction to invoke
predefined file-writer function. It can be embedded numerous times
where each embedding (after an instruction) means that a
visualization state toward preceding instruction will be generated. It
is important to note that the line number of executed instruction will
be embedded automatically by proposed technique in two phases.
First, line number for each instruction will be defined by splitting
inputted source code per line. Later, each file-writer function
invocation will be embedded with resulted line number in regards to
invocation position.

The position of each instruction-based feature will be defined manually
by user according to several rationales. First, it is impractical to automatically
define the position of each instruction-based feature while keeping language-
independent perspective in mind. Even though the position of these features
are, at some extent, considerably similar across programming languages,
some slight differences still apply. For instance, in Java, library-import
instruction set can only be placed after package declaration (if any); whereas,
in Python, such set can be placed anywhere. Second, for recording
visualization states, not all states are required to be considered. According to
our informal survey toward expectant users, displaying all visualization
states is difficult to be understood due to enormous information provided.

To provide clearer insight toward embedding phase, an example of
embedded code in Java can be seen in Figure 2. Library-import instruction set
is placed at the beginning of source code, followed by file-writer function-
invocation instructions, and file-writer function-declaration instructions
respectively. It is important to note that all visualized-to-be variables (i.e.,
firstInteger, secondInteger, and multiplyResult) are stored as global variables,
following the rule defined for file-writer function-declaration instructions.

Generation phase takes source code input (stored as a text file), compile
command, run command, and embedded code to generate a text file
containing visualization states. This phase is implemented by overriding
console commands to utilize language-dependent compiler (which should be
installed beforehand). The detail of this phase can be seen in Figure 3. It is
important to note that visualization states are not embedded as a part of
program output since separating those states with real output may be
impractical. Program output will be simply ignored by our proposed
technique.

In most programming languages, console commands (i.e., compile and
run command) need information related to target source code. In other
words, these commands will be defined differently per source code even
though some codes use same programming language. Since changing
commands each time a new source code is incorporated is quite impractical,
variable convention mechanism proposed in [11] is adapted in our technique.

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

97

Instead of writing such information directly to console commands, user can
write variables related to such information and change the content of those
variables in separate process; the proposed technique will automatically link
each variable with its content prior processing given code. Consequently,
written console commands can be generalized to be used for any source
codes that use same programming language. The detail of involved variables
in our technique can be seen in Table 1. To distinguish variable with standard
console command’s string, each variable will be prefixed with "@".

Figure 2. An example of embedded Java code; library-import instruction set takes

three lines from line 2 to 4; file-writer function-invocation instruction is embedded
on line 10, 12, 14, 15, and 16; file-writer function-declaration instructions takes 13

lines from line 18 to 30.

Visualization phase takes a text file containing visualization states and

visualizes it through an user interface. Recorded line number of executed
instruction will be displayed by highlighting related line on source code
preview; whereas, recorded variables and their values will be displayed on
variable list.

To prove the applicability of our proposed technique, a prototype PV
tool is developed. It is named Language-Independent Source code
visualizatioN (LISN). We use source code instead of program as our
terminology since it is less ambiguous; program could refer to both source
code and executable file. A default view of LISN can be seen on Figure 4. For
portability reason, source code and required features can be saved as a
project; original source code will be stored as it is while required features
will be stored as JSON files.

To use LISN, user is required to provide target source code and two
feature sets. The first set is related to programming language (which should
be changed only if a new programming language is incorporated) while the

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

98

latter one is related to source code (which should be changed each time a
new source code is incorporated).

Figure 3. Sub-phases in generation phase. It consists of two sub-phases: compile

and run sub-phase. At first, embedded source code will be compiled using compile
command. Later, resulted executable file will be run by providing the input using
file-based console pipeline mechanism. A forced termination will be conducted if
given executable file takes more than 5 seconds since inputted source code may

contain endless execution due to programmer error. Otherwise, visualization states
will be generated.

Table 1. Variables used in console command

Variable Reference
@dirpath Return working directory (i.e., a location where the

source code, input file, and output file are placed)
@srcname Return source code file name
@srcnamewithoutext Return source code file name without file extension
@exename Return executable file name
@exenamewithoutext Return executable file name without file extension
@inputname Return input file name
@inputnamewithoutext Return input file name without file extension
@outputname Return output file name
@outputnamewithoutext Return output file name without file extension

Programming-language feature set contains six features: compile

command, run command, executable file name, input file name, output file
name, and state file name. The last feature refers to a name of a file that
stores all visualization states. It should be in-sync with target file name
written in file-writer function-declaration instructions at embedding phase
(on Figure 2, we refer such name as states.txt). It is true that, in this set, only
compile and run command are directly related to programming language.
However, other features are still considered to be included on such set; they
can be only changed if a new programming language is incorporated.

Source-code feature set contains four features: source code input (as a
string; LISN will convert it to a file automatically), library-import instruction
set, file-writer function-declaration instructions, and file-writer function-

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

99

invocation instruction. Even though the last three features can be generalized
for all source codes written in similar programming language, they are still
included as source-code features instead of programming-language features;
they need to be changed on source codes which name of file-writer function
collides with predefined function.

Figure 4. A default view of LISN. User can provide target source code via file chooser

located at left-top panel.

For embedding phase, we assume that each line can only be embedded

with one feature. Hence, embedding positions can be simply defined by
clicking targeted lines on source code preview. After clicked, the color of
selected lines will be changed regarding to embedded feature and selected
line numbers will be displayed as comma-separated values at the bottom of
source code preview (see Figure 5).

Figure 5. An example view of LISN for embedding phase Each feature is represented
with a unique color on source code preview and its selected lines can be seen at the

bottom of source code preview.

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

100

After target source code and feature sets have been provided, LISN will
generate, compile, and run embedded code, resulting visualization states. At
visualization phase, such states are then stored as in-memory list-like data
structure where current index refers to current visualization state. Each
visualization state will display variables’ content and highlight currently
executed line (see Figure 6 for example view). Next and previous state can be
accessed by simply changing current index value of in-memory data
structure; next state is attained by incrementing current index while
previous state is attained in reverse. In LISN, this mechanism can be accessed
by clicking next and previous button placed at the right-bottom of source
code display.

Figure 6. An example view of LISN during visualization. Variables’ content is

displayed in a table while currently executed line is highlighted by adding an outside
border on current line. It is important to note that colors resulted from embedding

phase are still displayed to remind the user which lines he has marked.

5. EXPERIMENT AND ANALYSIS

Our proposed technique was experimented from two perspectives:
language independence and user satisfaction. All experiments were
conducted on LISN, our prototype PV that acts as the implementation of
proposed technique.

Experiment regarding language independence checks whether
proposed technique is able to visualize program from any languages by only
changing language-dependent features. It was conducted by designing
language-dependent features for five popular programing languages and
checking whether proposed technique works properly on such features.

We used Java, Python, C++, Kotlin, and Ruby as our case studies.
Designed language-dependent features for those languages can be seen in
Table 2, Table 3, Table 4, Table 5, and Table 6 respectively; those sets are
generated by analyzing the characteristics for each programming language
manually. It is important to note that VarName and VarValue in file-writer

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

101

function-declaration instructions are only some examples of storing a
variable. Both terms should be replaced with recorded-to-be variable name
and value before visualization. Further, instruction involving both terms
could also be propagated when there are more than one recorded-to-be
variable.

Table 2. Language-dependent features for Java

Feature Value
Compile command javac @srcname
Run command java @srcnamewithoutext < @inputname >

@outputname
Library-import
instruction set

import java.io.PrintWriter;
import java.io.File;
import java.io.FileOutputStream;

File-writer function-
declaration instructions

public static void func(int linenumber){
 try{
 PrintWriter writer = new PrintWriter(new
FileOutputStream(new File(@targetfilename),true));
 writer.println("VarName:"+VarValue);
 writer.println("linenumber:"+linenumber);
 writer.close();
 }catch(Exception e){
 e.printStackTrace();
 }
}

File-writer function-
invocation instruction

func(linenumber)

Table 3. Language-dependent features for Python

Feature Value
Compile command
Run command @srcname < @inputname > @outputname
Library-import
instruction set

File-writer function-
declaration instructions

def func(linenumber):
 file=open(@targetfilename,"a")
 file.write("VarName:"+(str)(VarValue))
 file.write("\n")
 file.write("linenumber:"+(str)(linenumber))
 file.write("\n")

File-writer function-
invocation instruction

func(linenumber)

After language-dependent features for all languages had been defined,

we evaluated it based on 8 x 5 source codes focusing on 8 Introductory
Programming concepts (e.g., branching, looping, and function) and 5 target
programming languages (i.e., Java, Python, C++, Kotlin, and Ruby). According

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

102

to our evaluation, it is clear that proposed technique works correctly on
given languages.

Table 4. Language-dependent features for C++

Feature Value
Compile command g++ -o @exenamewithoutext @srcname
Run command @exename < @inputname > @outputname
Library-import
instruction set

#include <fstream>

File-writer function-
declaration instructions

void func(int linenumber)
{
 ofstream myfile;
 myfile.open (@targetfilename,
std::ios_base::app);
 myfile << "VarName"<<VarValue<<"\n";
 myfile << "linenumber:"<<linenumber<<"\n";
 myfile.close();
}

File-writer function-
invocation instruction

func(linenumber)

Table 5. Language-dependent features for Kotlin

Feature Value
Compile command kotlinc @srcname -include-runtime -d @exename
Run command java -jar @exename < @inputname > @outputname
Library-import
instruction set

import java.io.PrintWriter
import java.io.File
import java.io.FileOutputStream

File-writer function-
declaration instructions

fun func(linenumber: Int) {
 try {
 val writer =
PrintWriter(FileOutputStream(File(@targetfilename),
true))
 writer.println("VarName:" + VarValue
 writer.println("linenumber:" + linenumber)
 writer.close()
 } catch (e: Exception) {
 e.printStackTrace()
 }
}

File-writer function-
invocation instruction

func(linenumber)

Experiment regarding user satisfaction checks whether proposed

technique is practical to be used. It was conducted by performing
questionnaire survey to 10 lecturer assistants at our university. Lecturer
assistants were chosen as our respondents instead of lecturers according to
three rationales. First, lecturer assistants, at some extent, share similar

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

103

teaching responsibility as the lecturers. Second, lecturer assistants know
student perspective better considering they are closer to students when
compared to lecturers. Third, lecturer assistants have looser schedule than
the lecturers, meaning they can participate in our experiment.

Table 6. Language-dependent features for Ruby

Feature Value
Compile command
Run command @srcname > @outputname
Library-import
instruction set

File-writer function-
declaration instructions

def func(linenumber)
 File.open("target.txt", "a") do |f|
 f.write("VarName:")
 f.write(@VarValue)
 f.write("\n")
 f.write("linenumber:")
 f.write(linenumber)
 f.write("\n")
 end
end

File-writer function-
invocation instruction

func(linenumber)

Each respondent were asked to rate 3 statements in 7-points Likert

scale (1 refers to completely disagree and 7 refers to completely agree). The
detail of each statement including its ID can be seen on Table 7. The first two
statements check whether proposed technique still holds similar benefits as
conventional PV while the last statement checks the applicability of our
proposed embedding technique. To mitigate biased result, the first author
simulated how LISN works to each respondent prior distributing the
questionnaire.

Table 7. Questionnaire survey statements which should be rated in 7-points Likert

scale by lecturer assistants.
ID Statement
Q1 Displaying variable content can help user to teach student regarding

given source code
Q2 Highlighting currently-executed line can help user to teach student

regarding given source code
Q3 Proposed embedding technique enables user to incorporate new

programming languages with ease

According to our respondents, all statements were positively agreed

(see Figure 7). Each of them was assigned with mean score higher than 5.5
(i.e., a minimum top quartile threshold in 7-points Likert scale). In other
words, it can be stated that proposed technique still holds similar benefit as

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

104

conventional PV while keeping language-independent behavior in mind. Q3
was assigned with the mediocre mean score, that is higher than Q1’s and
lower than Q3’s. Hence, it can be stated that, in our proposed technique,
language independence is more prominent than displaying variable content
while still less prominent than highlighting currently-executed line. It is
natural that language independence is less prominent than highlighting
currently-executed line on language-independent PV; such highlighting
mechanism is one of the most leading PV features for learning programming.

Figure 7. Questionnaire survey result. Horizontal axis represents survey statements

while vertical axis represents resulted score.

In terms of variability, respondents experienced the highest variability

while rating Q1; some respondents felt that variable name and value is
sufficient for learning programming while the others felt that additional
variable data should be featured (e.g., variable reference and type). In
contrast, the respondents experienced the lowest variability while rating Q2.
We would argue that such finding is natural considering highlighting
currently-executed line is implemented in similar manner as in most PV
tools.

6. CONCLUSION

In this paper, an embedding technique for language-independent PV
tool has been developed. It can visualize a program written in a new
programming language by setting only five language-dependent features:
compile command, run command, library-import instruction set, file-writer
function-declaration instructions, and file-writer function-invocation
instruction. According to our evaluation, two general findings can be
deducted. First, proposed technique, at some extent, is able to incorporate
program written in any programming languages as long as those languages
provide required language-dependent features. Second, proposed technique

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

105

is practical to be used since it still has the benefits of conventional PV despite
its language-independent behavior.

Three future directions are provided for this paper. First, we plan to
evaluate language independence of our technique on more programming
languages (e.g., Javascript). Second, we plan to evaluate proposed technique
in real teaching environment through quasi-experiment [26] and check
whether the result is promising. Third, we plan to provide a more general
framework for covering advanced programming aspects such as high
performance computing [27] on visualization.

REFERENCES
[1] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching

programming: A review and discussion,” Computer science education,
vol. 13, no. 2, pp. 137–172, 2003.

[2] M. Kölling, “The greenfoot programming environment,” ACM
Transactions on Computing Education (TOCE), vol. 10, no. 4, p. 14, 2010.

[3] J. Sorva, V. Karavirta, and L. Malmi, “A Review of Generic Program
Visualization Systems for Introductory Programming Education,” ACM
Transactions on Computing Education, vol. 13, no. 4, pp. 1–64, Nov. 2013.

[4] E. Kaila, T. Rajala, M. J. Laakso, and T. Salakoski, “Effects of Course-Long
Use of a Program Visualization Tool,” in Australasian Computing
Education Conference, Brisbane, 2010.

[5] O. Karnalim and M. Ayub, “The Effectiveness of a Program Visualization
Tool on Introductory Programming: A Case Study with PythonTutor,”
CommIT (Communication and Information Technology) Journal, vol. 11,
no. 2, 2017.

[6] O. Karnalim and M. Ayub, “The Use of PythonTutor on Programming
Laboratory Session: Student Perspectives,” KINETIK, vol. 2, no. 4, 2017.

[7] S. M. Cisar, R. Pinter, and D. Radosav, “Effectiveness of Program
Visualization in Learning Java: a Case Study with Jeliot 3,” International
Journal of Computers, Communications & Control, vol. 6, no. 4, 2011.

[8] O. Karnalim and M. Ayub, “A Quasi-Experimental Design to Evaluate the
Use of PythonTutor on Programming Laboratory Session,” International
Journal of Online Engineering (iJOE), vol. 14, no. 02, pp. 155–164, Feb.
2018.

[9] J. Á. Velázquez-Iturbide, A. Pérez-Carrasco, J. Á. Velázquez-Iturbide, and
A. Pérez-Carrasco, “Active learning of greedy algorithms by means of
interactive experimentation,” in Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and technology in computer science
education - ITiCSE ’09, New York, New York, USA, 2009, vol. 41, p. 119.

[10] O. Debdi, M. Paredes-Velasco, and J. Á. Velázquez-Iturbide, “GreedExCol,
A CSCL tool for experimenting with greedy algorithms,” Computer
Applications in Engineering Education, vol. 23, no. 5, pp. 790–804, 2015.

[11] E. Elvina and O. Karnalim, “Complexitor: An Educational Tool for
Learning Algorithm Time Complexity in Practical Manner,” ComTech:

 Volume 6, No. 1, June 2018

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

106

Computer, Mathematics and Engineering Applications, vol. 8, no. 1, p. 21,
Mar. 2017.

[12] C. A. Shaffer et al., “Algorithm Visualization: The State of the Field,” ACM
Transactions on Computing Education, vol. 10, no. 3, pp. 1–22, Aug. 2010.

[13] S. Halim, Z. Chun KOH, V. Bo Huai LOH, and F. Halim, “Learning
Algorithms with Unified and Interactive Web-Based Visualization,”
Olympiads in Informatics, vol. 6, pp. 53–68, 2012.

[14] L. Christiawan and O. Karnalim, “AP-ASD1 : An Indonesian Desktop-
based Educational Tool for Basic Data Structure Course,” Jurnal Teknik
Informatika dan Sistem Informasi, vol. 2, no. 1, Apr. 2016.

[15] F. C. Jonathan, O. Karnalim, and M. Ayub, “Extending The Effectiveness of
Algorithm Visualization with Performance Comparison through
Evaluation-integrated Development,” in Seminar Nasional Aplikasi
Teknologi Informasi (SNATI), 2016.

[16] S. Zumaytis and O. Karnalim, “Introducing an Educational Tool for
Learning Branch & Bound Strategy,” Journal of Information Systems
Engineering and Business Intelligence, vol. 3, no. 1, p. 8, Apr. 2017.

[17] T. L. Naps, J. R. Eagan, L. L. Norton, T. L. Naps, J. R. Eagan, and L. L.
Norton, “JHAVÉ—an environment to actively engage students in Web-
based algorithm visualizations,” in Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education - SIGCSE ’00, New
York, New York, USA, 2000, vol. 32, pp. 109–113.

[18] V. Karavirta and C. A. Shaffer, “JSAV: the JavaScript algorithm
visualization library,” in Proceedings of the 18th ACM conference on
Innovation and technology in computer science education - ITiCSE ’13,
New York, New York, USA, 2013, p. 159.

[19] C. A. Shaffer, M. Akbar, A. J. D. Alon, M. Stewart, and S. H. Edwards,
“Getting algorithm visualizations into the classroom,” in Proceedings of
the 42nd ACM technical symposium on Computer science education -
SIGCSE ’11, New York, New York, USA, 2011, p. 129.

[20] P. J. Guo, “Online python tutor: embeddable web-based program
visualization for cs education,” in Proceeding of the 44th ACM technical
symposium on Computer science education - SIGCSE ’13, New York, New
York, USA, 2013, p. 579.

[21] H. Kang and P. J. Guo, “Omnicode: A Novice-Oriented Live Programming
Environment with Always-On Run-Time Value Visualizations,” in The
30th ACM Symposium on User Interface Software and Technology (UIST,
2017.

[22] J. Á. Velázquez-Iturbide, A. Pérez-Carrasco, and J. Urquiza-Fuentes,
“SRec: : an animation system of recursion for algorithm courses,” in
Proceedings of the 13th annual conference on Innovation and technology
in computer science education - ITiCSE ’08, New York, New York, USA,
2008, vol. 40, p. 225.

Volume 6, No. 1, June 2018

 EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

107

[23] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing programs
with Jeliot 3,” in Proceedings of the working conference on Advanced
visual interfaces - AVI ’04, New York, New York, USA, 2004, p. 373.

[24] P. Gestwicki and B. Jayaraman, “Interactive Visualization of Java
Programs,” in Symposia on Human Centric Computing Languages and
Environments, 2002.

[25] T. Rajala, M.-J. Laakso, E. Kalla, and T. Salakoski, “VILLE: a language-
independent program visualization tool,” in Proceedings of the Seventh
Baltic Sea Conference on Computing Education Research - Volume 88,
Darlinghurst, 2007, pp. 151–159.

[26] J. W. Creswell, Educational research : planning, conducting, and
evaluating quantitative and qualitative research. Pearson, 2012.

[27] I. E. W. Rachmawan et al., “An Embedded System for applying High
Performance Computing in Educational Learning Activity,” EMITTER
International Journal of Engineering Technology, vol. 4, no. 1, pp. 46–64,
Aug. 2016.

