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Abstract 
 
Indirect Field Oriented Control (IFOC) is one of the vector control 
methods that can be applied to induction motor in the industrial world 
rather than Direct Field Oriented Control (DFOC) because of the flux is 
obtained from the formulation. However, IFOC can not guarantee the 
robustness and stability of the systems. Stability analysis such as 
Lyapunov Stability Theory can be used to make the system stable but 
not the robustness. Model based controller that can guarantee the 
stability and robustness such as sliding mode control (SMC) and fuzzy 
needs to be added in IFOC system to achieve proportional response 
system. Robust current regulator using sliding mode control was 
designed in this paper from state space model for model based 
controller. In transient response and under disturbance SMC shows 
better performance than PID in rising time and robustness at rotor 
speed and stator current. 
 

Keyword : IFOC, Induction Motor, State Space Equation, Model 
Based Controller, SMC. 

 
NOMENCLATURE 

Voltage    (V)  220  Volt 
Frequency    (�)  50  Hz 
Rotor Type     Squirel Cage 
Rotor Resistance  (��)  6.085  Ω 
Stator Resistance  (��)  6.03  Ω 
Rotor Inductance  (��)  0.4893  H 
Stator Inductance  (��)  0.4893  H 
Mutual Inductance  (��)  0.4503  H 
Number of Pole Pairs  (P)  2 
Moment of Inertia   (�)  0.00488 Kg 
 
1. INTRODUCTION 

Induction motors are widely used in the industrial world for their firm 
and  low price [1]. Vector control method in induction motors can provide high 
dynamic performance. IFOC which is one part of the vector control method can 
be applied and accepted by the electric drive market in an industrial world [2], 
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[3], [4]. However, IFOC cannot guarantee robustness and stability aspect of the 
systems. Robustness and stability aspects must be added to achieve high-
performance of the system. The analytical stability such as Lyapunov Stability 
Theory can guarantee the stability of the system but not the robustness. 

Model based controller such as fuzzy [5], [6]  and sliding mode control 
(SMC) [7], [8]  can be designed to guarantee robustness, stability and optimal 
condition of the system. State space equation should be modelled to determine 
the architecture of the controller such as fuzzy and SMC. The IFOC state space 
equation is obtained from the modeling of the induction motor at DQ rotating 
frame by making the flux on the d-axis to be constant and the q-axis to zero [3]. 

This paper is organized as follows. Section 2 describes about related 
research with this issue. The originality of this paper is shown in section 3. 
Section 4 describes per unit induction motor model in the rotating frame with 
arbitrary speed. The way to get IFOC equation from induction motor model in 
DQ reference frame is described in section 5. In section 6, the IFOC equations 
that consist of speed, flux, and current regulator equation is modeled to state 
space can be used to design the model based controller. in section 7, IFOC – 
SMC design is proposed to make response system robust and stable. Result and 
discussion about rotor speed and current regulator response in IFOC state 
space are described in section 8. Finally, the conclusions of this paper are 
shown in section 9. 
 

2. RELATED WORKS 

I F O C is one of the vector control methods that separate torque and flux 
in the induction motor. This technique represents the complex and nonlinear 
model of induction motor in a similar manner to DC machines to get high-
performance control [3]. The basic characteristic of flux, speed and stator 
current of IFOC need the controller to perform good characteristic, guarantee 
robustness and stability . 

The model based controller like fuzzy model based and sliding mode 
control need a state space model to generate controller design. The state space 
model can be used to determine the stability condition using stability theory 
such as lyapunov and the constant of robustness to perform proportional 
response system  [9]. 

Research about the robust controller for speed regulation using sliding 
mode for IFOC system already exists. In this research, the sliding mode 
controller is designed in speed regulation to guarantee the robustness in rotor 
speed aspect [10]. This paper proposed the design of IFOC state space for 
induction motor in a current regulator. The state space can be used to design 
the suitable controller that guarantee robustness, stability, and high-
performance in dynamic response. The sliding mode is designed in current 
regulator side to guarantee the robustness in speed response. 

 
3. ORIGINALITY 
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This paper contribution is designing sliding mode control (model-based 
controller) for IFOC which applied for an induction motor. The sliding mode is 
designed in current regulator side to achieve the robustness, stability and 
reach the optimal condition in proportional time of rotor speed. The chattering 
phenomenon in rotor side should be avoided because of its danger to the 
hardware and consume more energy. By designing SMC in current regulator, 
the chattering phenomenon in rotor speed can be eliminated but not the 
robustness and stability. 

 
4. INDUCTION MOTOR MODEL 

Per phase of induction motor’s equivalent circuit consist of stator and 
rotor side resistance, leakage inductance, induced voltage and mutual 
inductance shown in Figure 1. 

 
Fig.  1. Per phase equivalent circuit of IM 

The induction motor model presented in the rotating frame with 
arbitrary reference speed is [3], [11] : 
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U� is voltage and  i� is current of stator vectors;  ψ
�

 is flux of rotor vectors (�, � 

are real and imaginary axis); �� is rotor angular speed; ��� is slip angular 
speed; �� is angular speed of reference frame; �� is load torque and � is relative 
time [11].  
5. INDIRECT FIELD ORIENTED CONTROL (IFOC) 

From induction motor model in equation 1, electrical induction motor 
model in dq rotating frame is [3], [12]: 
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�  is total leakage factor. 

The mechanical modeling from equation 1 is given by : 
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Indirect field oriented control of induction motor’s principle is that dq 
rotating frame is connected to the rotor flux vector. So, the flux and torque can 
be controlled separately by stator direct-axis current (���) and quadrature-
axis current (���) shown in Figure 2. This form takes the control of an induction 

motor looks like separately-excited DC motor in linearity control, decoupling 
and high performance [11], [13], [14].  

The field oriented control orientation is obtained by [3], [12] : 

�
��� =  ��

��� = 0         (4) 

The current regulator equation can be defined by substitution equation 
(4) to equations (2) : 
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The transformation to make ABC frame to dq0 reference frame is clarke-
park transform [2], [3], [11]. The equation for stator current is : 
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where ��,  �� is rotor and stator angular speed of induction motor [10]. 
The rotor flux in direct axis based on equation 2 substituted to equation 

4 is : 
���
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equation 6 can be write : 

ψ� =  
�� ���
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and the quadrature rotor flux is : 
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the mechanical equation substituted from equation 3 to equation 4 is : 
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the electromagnetic torque is [11], [15] : 
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where �� is the number of phase windings. 
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Fig.  2 Indirect field oriented control scheme 

6. CURRENT REGULATOR STATE SPACE MODEL OF IFOC 

The state space of IFOC shown in Figure 3 uses multiloop model 
(decoupled / cascade system) which consists of two loops. The inner loop is 
stator current regulator and the outer loop is rotor flux and speed controller. 
The state space model of IFOC’s current regulator is : 

�̇ = �� + �� + ���       (10) 

with : 
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The outer loop equations are rotor flux and speed as in equation 6 and 8 

with : 

input vector   ����, ����
�
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state vector   [��, ��]� 

 

Fig.  3 Blok diagram of decoupled indirect field oriented control scheme for model 
based controller 

 

7. IFOC – SLIDING MODE CONTROL DESIGN IN CURRENT REGULATOR 

The sliding surface is presented by  [16] and [17] : 

�(e; �) = �
�

��
+  λ�

��1

e 

where n is degree of sliding surface; e =  ������� −  � is error and λ is constant. 

The strategies to design sliding mode control is as follows : 

���� =  ��� + ��        (11) 

Lyapunov function used to gurantee the system stability is : 

� =  1
2� �2 

this lyapunov function has derivative : 

�̇ =   ��̇ 

with : 

� =   λ e 

�̇ =   λ ė 

From equation 10, 11 and Lyapunov stability function, the current 
regulator controller is : 

��� =  ��1 ��̇������ −   �� − ����     (12) 

with : 
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��1 = �
��� 0

0 ���
� 

where ��1 is the inverse of matrix B; �������
̇  is the differential desire state 

vector of current regulator state space. 

�� =  �� +  � ����[�]       (13) 

By substituting equation 12 and equation 13 to equation 11, the sliding mode 
control design is : 

���� =  ��1 ��̇������ −   �� − ���� +  � � +  � ����[�] 

The stator current regulator in D-axis is : 
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The stator current regulator in Q-axis is : 
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8. RESULT AND DISCUSSION 

The proposed model based controller in current regulator side of IFOC 
for robustness and stability controller using SMC is compared with PI 
controller in variable rotor speed and stator current in DQ rotating frame that 
shown in Figure 3. By making the same controller and its parameter in speed 
and flux controller the performance of a model based controller can be 
compared with PI controller in a current regulator. The parameter controller 
of current regulator is shown in Table 1. In transient response of 900 rpm of 
rotor speed shown in Figure 4, the PI controller has 62.17 ms of rising time,  
1.97 ms of undershoot and 0.5 % overshoot. The SMC has 6.76 ms rise time 
and 0.5 % overshoot. In achieving a reference speed SMC, gives a better 
response than PI controller with rising time less than 8 ms shown in Table 2 
and 3. The performance of SMC and PI controller in overshoot and undershoot 
side are nearly same. 

Table  1. Controller parameter of current regulator  

Current 
Regulator 

Controller Parameter 

PI SMC 

Kp Ki λ k β 

i sd 10 0.2 25 10 15 

i sq 10 0.2 25 10 15 
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The robustness and stability of model-based controller using SMC to 
overcome the disturbance is shown in Figure 4 with 1.5 Nm of torque load (��). 
In SMC, the speed response in overcoming the disturbance is decreasing but 
less than 2 % of steady state error in reference speed 900 rpm. The robust 
model-based controller in multiloop IFOC system designed in current 
regulator using First Order Sliding Mode Control (FOSMC) that contains 
chattering phenomenon in Figure 5. The comparison between model-based 
and PI controller proven that model-based controller such as SMC is better in 
overcoming the disturbance like in Figure 6. 

In Figure 7, the rotor speed response of IFOC method which uses PI 
controller and SMC is compared in variable reference speed and torque load. 
Controller parameter which uses these results are shown in Table 4. The 
results show that SMC controller can compensate the disturbance but not the 
PI controller. When the rotor speed is under 1.5 Nm disturbance at 0.5 
seconds, SMC controller can compensate the disturbance (robust) but not for 
PI controller. When the reference speed is changed in to be 1.150 rpm and is 
under disturbance, the SMC controller shows the robustness but PI controller 
is not. The PI controller reaches the reference speed again when the torque 
load decrease to 1.5 seconds. This condition repeats in 2 and 2.5 ; 3 and 3.5 
seconds. 

 
Table  2. First comparison of PI controller and SMC in transient response 

Reference Speed (rpm) 700 800 900 

Transient Parameter PI SMC PI SMC PI SMC 

Rise Time (ms) 52.04 4.55 57.30 4.90 62.17 6.76 

Overshoot (%) 3.65 2.58 0.5 1.53 0.5 0.5 

Undershoot (ms) 1.97 8.51 1.99 1.94 1.97 1.89 

 

Table  3. Second comparison of PI controller and SMC in transient response 

Reference Speed (rpm) 1000 1100 1200 

Transient Parameter PI SMC PI SMC PI SMC 

Rise Time (ms) 83.87 6.48 90.98 7.69 112.63 6.54 

Overshoot (%) 0.5 0.5 0.5 0.5 0.5 0.5 

Undershoot (ms) 1.96 2.08 1.99 1.98 1.97 2.26 
 



Volume 5, No. 2, December 2017 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 

264 

 
Fig.  4 IFOC’s rotor speed response using PI controller and SMC under disturbance 

at 1 second and reference rotor speed at 900 rpm 

 
Fig.  5 Chattering effect in First Order Sliding Mode Control (FOSMC) 

 
Fig.  6 The comparison between PI controller and SMC in disturbance area for rotor 

speed and stator current in DQ rotating frame at reference speed 900 rpm 
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Table  4. Controller parameter of current regulator for variable speed and torque 

load 

Current 
Regulator 

Controller Parameter 

PI SMC 

Kp Ki λ k β 

i sd 14 0.1 30 10 25 

i sq 14 0.1 30 10 25 

 

 
Fig.  7 The comparison between PI and SMC controller in variable reference speed 

and torque load 

The comparison between sliding mode design in current regulator and 

speed controller in rotor speed side is shown in Figure 8. It shows that the 

robustness and stability under 0.5 Nm of torque load is achived in rotor speed 

by designing the controller in current regulator or speed control. However, 

sliding mode control which design in speed controller has chattering 

phenomenon that is danger to the hardware. On another hand, sliding mode 

controller designed in current regulator has no chattering phenomenon which 

is shown in Figure 9. The comparison of stator current in DQ rotating frame 

shows the sliding mode in current regulator (���= 2.79 A and ���  = 2.77 A) is 

lower than speed control (���= 2.96 A and ���  = 3.00 A)  which shown in Figure 

10 and Table 5. 
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Fig.  8  Variable speed response using SMC in Speed controller and Current 

Regulator with various torque load 

 

Fig.  9  Chattering phenomenon in Speed Response 

 

(a) 
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(b) 

Fig.  10 Stator Current Response in DQ rotating frame (a) SMC in speed controller 

(b) SMC in current regulator 

 
Table  5.  Comparison table of SMC in speed controller and current regulator 

 
Stator Current (A) 

In D Axis In Q Axis 

SMC in Speed 
Controller 

2.96 3.00 

SMC in Current 
Regulator 

2.79 2.77 

 

9. CONCLUSSION 

In this paper, state space equation of current regulator in Indirect Field 
Oriented Control (IFOC) has been proposed to design a model based controller 
using Sliding Mode Control (SMC). To guarantee the stability, SMC is designed 
by using Lyapunov stability theory. SMC has better performance in the 
transient response of rotor speed than PI controller with rising time less than 
8 ms in various reference speed. In robustness and stability aspect SMC has 
better performance than PI in rotor speed and torque load. It is proven in the 
ability of SMC to overcome 1.5 Nm of torque load that shown in Figure 6. Figure 
7 shows the robustness of SMC in variable reference speed and torque load 
which compare with PI controller. By designing SMC in current regulator, the 
chattering phenomenon which is danger to the hardware does not exist in 
rotor speed and the stator currents are smaller than SMC in the speed 

controller. The stator current in direct axis (���) decreased by  5.74% and in 

quadrature axis (���) by 7.66%. 
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