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Abstract

Clustering performance of the K-means highly depends on the
correctness of initial centroids. Usually initial centroids for the K-
means clustering are determined randomly so that the determined
initial centers may cause to reach the nearest local minima, not the
global optimum. In this paper, we propose an algorithm, called as
Centronit, for designation of initial centroidoptimization of K-means
clustering. The proposed algorithm is based on the calculation of the
average distance of the nearest data inside region of the minimum
distance. The initial centroids can be designated by the lowest
average distance of each data. The minimum distance is set by
calculating the average distance between the data. This method is
also robust from outliers of data. The experimental results show
effectiveness of the proposed method to improve the clustering
results with the K-means clustering.

Keywords: K-means  clustering, initial  centroids, K-
meansoptimization.

1. Introduction

Clustering is an effort to classify similar objects in the same groups.
Cluster analysis constructs good cluster when the members of a cluster have
a high degree of similarity each other (internal homogeneity) and are not like
members of other clusters (external homogeneity) [1][2]. It means the
process to define a mapping f:D->C from some data D={d;,d>, ...d.} to some
clusters C={ci,cz, ...cn} on similarity between d;. The applications of clustering
is diversely in many fields such as data mining, pattern recognition, image
classification, biological sciences, marketing, city-planning, document
retrievals, etc.
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The most well known, widely used and fast methods for clustering is K-
means clustering developed by Mac Queen in 1967. The simplicity of K-
means clustering made this algorithm used in various fields. K-means
clustering is a partitioning clustering method that separates data into k
mutually excessive groups. Through such the iterative partitioning, K-means
clustering minimizes the sum of distance from each data to its clusters. K-
means clustering is very popular because of its ability to cluster a kind of
huge data, and also outliers, quickly and efficiently. It remains a basic
framework for developing numerical or conceptual clustering systems
because various possibilities of distance and prototype choice [3].

However, K-means clustering is very sensitive to the designated initial
starting points as cluster centers. K-means clustering generates initial
clusters randomly. If a randomly designated initial starting point close to a
final cluster center, then K-means clustering can find the final cluster center.
It, however, is not always. If a designated initial point is far from the final
cluster center, it will lead to incorrect clustering results [4]. Because of initial
starting points generated randomly, K-means clustering does not guarantee
the unique clustering results [5]. K-means clustering is difficult to reach
global optimum, but only to one of local minima [6].

2. RELATED WORKS

Several methods proposed to solve the cluster initialization for K-
means clustering. A recursive method for initializing the means by running K
clustering problems is discussed by Duda and Hart (1973). A variation of this
method consists of taking the entire data into account and then randomly
perturbing it k times [5]. Bradley and Fayyad [7] proposed an algorithm that
refines initial points by analyzing distribution of the data and probability of
data density. Penda et al. [8] presented empirical comparison for the
initialization methods for K-means clustering and concluded that the random
and Kaufman initialization method outperformed the other two methods
with respect to the effectiveness and the robustness of K-means clustering.
Shehroz and Ahmad [5] proposed Cluster Center Initialization Algorithm
(CCIA) to solve cluster initialization problem. CCIA is based on two
observations, which some patterns are very similar to each other. It initiates
with calculating mean and standard deviation for data attributes, and then
separates the data with normal curve into certain partition. CCIA uses K-
means and density-based multi scale data condensation to observe the
similarity of data patterns before finding out the final initial clusters. The
experimental results of CCIA performed the effectiveness and robustness of
this method to solve the several clustering problems.

3. ORIGINALITY

In this paper, we propose a new approach, called as Centronit, to
designate initial centroids for K-Means clustering. Centronit is based on the
calculation of data density inside the certain range of data distribution.
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Centronit does not involve probabilistic variables at all so that it produces the
constant clustering results. Moreover, because of reflecting the data
distribution, Centronit is robust for outliers.

4. DESIGN SYSTEM
4.1 Basic Theory of K-means Clustering

Let A={a: | i=1, .., n} be attributes of n-dimensional vector and X={x; |
i=1, .., r} be each data of A. The K-means clustering separates X into k
partitions called clusters S={s; | i=1, ..., k} where MeX is M={m; | i=1, ..., n(si)}
as members of S. Each cluster has cluster center of C={c; | i=1, ..., k}.

K-means clustering algorithm can be described as follows:
1. Initiate its algorithm by generating random starting points of initial

centroids cr.

2. Calculate the distance d(x,c) between vector x; to cluster center c.
Euclidean distance used to be used to express the distance.
Separate x;into sy which has minimum d(x,c).
4. Determine the new cluster centers defined as:

&

¢ =150 m(s,)),  wherep =n(s) ®

5. Go back to step 2 until ¢; = ¢;-1

To calculate the distortion of K-means clustering, let E:X—=>S be encode
function to cluster X into S, and D:S—> X be the decode function. The distortion
of clustering can be defined as:

Distortion = |5}, (x; — D[E(x)])] )

The correct clustering has x=D|E(x;)], so that Distortion is 0. A good
clustering performs minimum Distortion. Therefore, it try to make Distortion
as minimum as possible. Referring Eq.1 and MeX, the effort to minimize
Distortion can be set by minimizing P as:

P = |(m(su)) — ¢ (3)

whereck is the cluster center of m(s;k). Therefore, the determining of initial
centroids for K-means is very important because it can determine the
distortion and/or the precision of clustering results.

4.2 Basic Concept of our proposed Centroit

It is common that the ideal initial cluster center resides near average
gravity of the cluster members. It means that it absolutely depends on
thedata distribution of them. For a simple case which has only 1 cluster, if the
cluster center X of the clusters assumed as one of the members, it performs:
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%2?=1|f —| < %Z}:fo — 1| (4)

where x; # x;. Eq. 4 expresses that Xis the lowest average distance to the other
members. Because the cluster center is unknown in a priori, Equation 4 can
be modified in order to look for the nearest members from Xthat can be
analyzed it as below:

T; = LZ;:H’CL - xj| (5)

Wherex; # x;. From Equation 5, the nearest members from desired
cluster center which show the most minimal 7; can be determined.

4.3 Capturing certain area

Starting from Equation 5, we then expand the case, which consists more
than one cluster. The differential distance |x; - x;| can be calculated because it
has scalability factor in the certain area. Let we apply the circular region with
diameter A to appoint the certain range of area as shown in Figure 1.

Figure 1. Certain area showed by circular region with diameteri

Then, Equation 5 can be modified as follows:

T; = - ZT;_11|xz - xj| (6)

ni—1

where |x;-Xxj| < A and n; is number of points inside the circular area which
point i is its center.

Based on Equation 6, the most minimum T as the nearest members
from desired cluster center is determined. This implies that the most
minimum T can express the good initial centroids.

It can be explained that the nearest point to cluster center, assumed as
a, can relatively cover calculation of all points which make nq close to total
points. On the contrary, the furthest point to cluster center, assumed as b, can
just cover calculation of some points because the distance to furthest point is
relatively < A. Figure 2(a) and 2(b) illustrates the different coverage

calculation between two points. Therefore, it makes n.,>np, so that it causes
Ta<Th.
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(a) (b)
Figure 2. [llustration of different coverage calculation between point a in (a) and
point b in (b), with n, = 14, n,= 10.

Now, we can apply Equation 6 for clustering cases more than one
cluster by setting the appropriate value A. Figure 3 shows use of A for
capturing the certain area of clustering.

(a) (b)

Figure 3. Capturing two areas of clustering cases

Because it just applied one value of 4, it could be n, lower than total
members of cluster, as is shown in Figure 3 that there is certain point outside
the circular range. It will also make that the nearest point to the cluster
center can be represented by the lowest minimal value of Ti. Meanwhile, it
also can answer why this approach can be robust from outlier of data.

4.4 Setting appropriate A

The most critical point is how to set the appropriate A. It will be difficult
if we set manually because the clustering cases are very various. If the
dimension of data is more than three, it is difficult to imagine the
visualization of the data distribution. In this paper, we try to overcome with
the automatic setting of value .

Referring the case in Figure 3, the ideal A can be determined by half of
differential distance between the cluster centers, as is shown in Figure 4.
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Figure 4. Determining A with differential distance between the cluster centers.

It may cause the certain points those are near to the boundary involve
some members of the other clusters, as is shown in Figure 5. That is what we
aim because it will make T; bigger, so that it has low chance to be initial
cluster center.

* @
.
P

s®e

Figure 5. [llustration of a point which is involving some members of the other
clusters.

The desired cluster centers of the clustering cases are not known in a
priori so that the value of A from differential distance between cluster centers
has not been determined. The following approach to solve this problem is
proposed. The distribution of the data actually can express the average
distance among them. Based on Equation 5, it is possible to determine A by
calculating the average distance between all data points as follows:

_ 1 n n—-1
}" - 2n(n—1) i=1 j=1 |xl - xj| (7)

wherex; # x;, From Equation 7, the value of Acan be set automatically. It
expresses the average distance among separated clusters.

4.5 Execution steps
In this subsection the following execution steps of our proposed
Centronit for initial centroids of K-means clustering is proposed,

1. Set X={x; | i=1, .., r} as each data of A where A={a; | i=1, .., n} is

attribute of n-dimensional vector.
2. Set Kasthe predefined number of clusters.
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Compute diameter of circular area Aas Equation 7.

4. Compute n; as number of points inside the circular area A for x; which
point i is its center. Execute for i=1..n where n is total number of
points.

5. Compute differential distance T; for each point as Equation 6.

6. Init p=0 as a counter to compute number of initial centroids that will
be designated.

7. Find T, as the most minimum value of T.

8. Increment p=p+1

9. Assign ¢, = Tpy as designated initial cluster center

10.Set T, with a defined big value

11.Repeat to step 7 until p=K

After processing, it will generate the designated initial centroids cp
where p=1, 2, ..,K. Then, we can apply it as initial centroids for K-means
clustering. The experiment results will perform the accuracy of the proposed
method.

5. EXPERIMENT AND ANALYSIS

Two experimental data, normal random data distribution datasets and
real world datasets are used for evaluation of the proposed Centronit for K-
means clustering.

5.1 Normal random distributed data

In order to evaluate an ability of the proposed method for well-separate
case of clustering, two dimensional normal random data distribution datasets
are used. We make 1000 experiments, then clustering performance of the
proposed method is compared with Hierarchical methods (Single Linkage,
Centroid Linkage, Complete Linkage and Average Linkage), Fuzzy C-means
and K-means clustering using random initialization. For Fuzzy C-means
clustering, 1.5 for degree of fuzziness is used as an example. For K-means
clustering, we take the average results of 100 experiments.

The following variance factors Vis defined as a performance measure in
the experiments. Variance constraint [9] can express the density of the
clusters with variance within cluster and variance between clusters [10][11].
The ideal cluster has minimum variance within clusters (V.) to express
internal homogeneity and maximum variance between clusters (V) to
express external homogeneity [12].

Vi
Vp

V= (8)

Table 1 shows the variance factor comparison among the
aforementioned methods. From Table 1, the variance factor of the proposed
method shows the lowest V, same as V of the Hierarchical methods so that it
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is concluded that the proposed method does work so well for the well-
separated clustering cases.

Table 1. Comparison of variance factor for normal distributed random dataset

Clustering Algorithm v
Hierarchical Clustering 0.002997
Fuzzy c-means 0.005898
K-means (random init.) 0.0164869
K-means using Centronit 0.002997

5.2 Real world datasets

The real world datasets used are Iris data, Wine data, Fossil data,
Ruspini data, Letter Recognition data and New Thyroid data which are widely
used and well known datasets for evaluation of clustering algorithms.

The raw data of the real world datasets are used because comparison of
clustering performance between the proposed method and the other existing
methods is concerned. If we normalize the data, even though it is usual to get
the better clustering results, the clustering results are not only dependent on
clustering methods, but also are dependent on normalization methods.

Clustering performance of Single Linkage, Centroid Linkage, Complete
Linkage, Average Linkage, Fuzzy c-means, K-means clustering with random
designated initial cluster center is compared to the proposed method. The
same datasets as CCIA [5] is used are utilized for the comparison, even
though its clustering result computed after normalizing the data ranges from
0 to 1. For Fuzzy c-means clustering, 1.5 for degree of fuzziness is again used.
For K-means clustering using random initialization, 100 iteration times is
used and take the average results.

The following error percentage which is calculated from the number of
misclassified patterns and the total number of patterns in the datasets is
evaluated.

Numberofmisclassified
Error = U i

x100% (9)

Numberofpatterns

5.2.1 Iris dataset

This dataset is from the UCI Repository [13]. This dataset contains
information about Iris flowers. There are three classes of Iris flowers, namely
Iris Setosa, Iris Versicolor and Iris Virginica. The dataset consists of 150
examples with 4 attributes. One class is well separable against the other two.
The others have a large overlap. Table 2 shows the comparison of error ratio
between our proposed Centronit and other clustering algorithm for Iris
dataset.
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Table 2. Comparison of Error ratio for Iris dataset
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Clustering Algorithm Error (%)
Single Linkage 32
Centroid Linkage 9.3333
Complete Linkage 16
Average Linkage 9.3333
Fuzzy C-means 13.524
K-means (random init.) 17.7507
K-means using CCIA 11.33
K-means using Centronit 10.6667

5.2.2 Wine dataset

We also obtained this dataset from UCI Repository [13]. The data is the
result of a chemical analysis of wines grown in a region in Italy but derived
from three different cultivars. There are three classes. The dataset consists of
178 examples each with 13 continuous attributes. The dataset contains
distribution 59 examples of class 1, 71 examples for class 2 and 48 examples
for class 3. Table 3 shows the comparison of error ratio between our
proposed Centronit and other clustering algorithm for Wine dataset.

Table 3. Comparison of Error ratio for Wine dataset

Clustering Algorithm Error (%)
Single Linkage 57.3034
Centroid Linkage 38.764
Complete Linkage 32.5843
Average Linkage 38.764
Fuzzy c-means 30.3371
K-means (random init.) 32.6197
K-means using CCIA 5.05
K-means using Centronit 29.7753

The high error happened with K-means clustering using Centronit
compared with CCIA because the raw data actually has far difference scale
among attributes. There is an attribute that has high scale of value compared
to the others. For this case, the data is usually better to standardize before
clustering. Table 4 performs the error of K-means clustering using Centronit
after normalizing the data using 4 different normalization methods.

Table 4. Error of K-means using Centronit after normalizing wine dataset

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168
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Min-Max (0-1) 5.618
Z-Score 2.809
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5.2.3 Fossil dataset

The Fossil data is obtained from Chernoff [14]. It consists of 87
nummulitidae specimens from Eocene yellow limestone formation of
northwestern Jamaica. There are three 6 attributes with 3 classes which the
distribution is 40 examples of class 1, 34 examples of class 2 and 13 examples
of class 3. Table 5 shows the comparison of error ratio between our proposed
Centronit and other clustering algorithm for Fossil dataset.

Table 5. Comparison of Error ratio for Fossil dataset

Clustering Algorithm Error (%)
Single Linkage 13.7931
Centroid Linkage 11.4943
Complete Linkage 14.9425
Average Linkage 9.1954
Fuzzy c-means 11.5057
K-means (random init.) 8.5931
K-means using CCIA 0
K-means using Centronit 4.5977

K-means clustering using CCIA showed the smallest error compared to
the others as is shown in Table 5. However, if any of the normalization is
taken into account, then K-means clustering with Centronit shows the
smallest errors as is shown in Table 6.

Table 6. Error of K-means using Centronit after normalizing Fossil dataset

Normalization Method Error (%)
Min-Max (0-1) 0
Z-Score 12.6437
Sigmoid 4.5977
Softmax 12.6437

5.2.4 Ruspini dataset

The Ruspini dataset represents a simple, well-known example that is
commonly used as a benchmark problem in evaluating clustering methods
and is widely available, incorporated as a built-in data object in both R and S-
plus statistics packages [15]. The dataset consists of 75 bi-variate attribute
vectors. There are fthe classes. The dataset contains 23, 20, 17 and 15 in
classes 1, 2, 3 and 4, respectively. Table 7 shows the comparison of error
ratio between our proposed Centronit and other clustering algorithm for
Ruspini dataset.

Table 7. Comparison of Error ratio for Ruspini dataset

Clustering Algorithm Error (%)
Single Linkage 0
Centroid Linkage 0
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Clustering Algorithm Error (%)
Complete Linkage 4
Average Linkage 0
Fuzzy c-means 0
K-means (random init.) 13.7787
K-means using CCIA 4
K-means using Centronit 0

5.2.5 Letter recognition dataset

This dataset obtained from UCI Repository [13]. The objective is to
identify each of a large number of black-and-white rectangular pixel displays
as one of the 26 capital letters in the English alphabet. The character images
were based on 20 different fonts and each letter within these 20 fonts was
randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus
was converted into 16 primitive numerical attributes (statistical moments
and edge counts), which were then scaled to fit into a range of integer values
from O through 15. The training data consists of first 16000 items and then
used the resulting model to predict the letter category for the remaining
4000. For experimental purpose we have taken 595 patterns of letter A and
597 patterns of letter D from the training dataset, as CCIA has done. Table 8
shows the comparison of error ratio between our proposed Centronit and
other clustering algorithm for Letter Recogniton dataset.

Table 8. Comparison of Error ratio for Letter Recognition dataset

Clustering Algorithm Error (%)
Single Linkage 49.8322
Centroid Linkage 48.1544
Complete Linkage 42.7852
Average Linkage 6.8792
Fuzzy c-means 13.1711
K-means (random init.) 8.2326
K-means using CCIA 8.55
K-means using Centronit 8.2215

5.2.6 New thyroid dataset

The new thyroid dataset is also obtained from UCI Repository [13]. The
dataset contains information about classification whether a patient's thyroid
to the class euthyroidism, hypothyroidism or hyperthyroidism. The diagnosis
(the class label) was based on a complete medical record, including
anamnesis, scan etc. The dataset consists 5 attributes, with 215 examples.
The distribution is 150 of class euthyroidism, 35 of class hypothyroidism and
30 of class hyperthyroidism. Table 9 performs the comparison of error ratio
between our proposed Centronit and other clustering algorithm for New
Thyroid dataset.
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Table 9. Comparison of Error ratio for New Thyroid dataset

Clustering Algorithm Error (%)
Single Linkage 29.7674
Centroid Linkage 27.907
Complete Linkage 28.3721
Average Linkage 26.0465
Fuzzy c-means 14.4186
K-means (random init.) 20.9842
K-means using Centronit 13.9535

6. CONCLUSION

It is widely reported that the K-means clustering algorithm suffers from
initial centroids. The main purpose is to optimize the designation of the
initial centroids for K-means clustering. Therefore, in this paper we proposed
Centronit as a new algorithm of initial centroid designation algorithm for K-
Means Clustering. This algorithm is based on the calculating the average
distance of the nearest data inside region of the minimum distance. The
initial centroids can be designated by the lowest average distance of each
data. The minimum distance is set by calculating the average distance
between the data. This algorithm creates the unique clustering results
because it does not involve the probabilistic calculation. Moreover, because
of observing the data distribution, Centronit is robust for outliers.
Experimental results with normal random data distribution and real world
datasets perform the accuracy and improved clustering results as compared
to some clustering methods.
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