
EMITTER International Journal of Engineering Technology

 Vol. 4, No. 1, June 2016

ISSN: 2443-1168

Copyright © 2016 EMITTER International Journal of Engineering Technology - Published by EEPIS

141

Review of A* (A Star) Navigation Mesh Pathfinding as the

Alternative of Artificial Intelligent for Ghosts Agent on the

Pacman Game

Moh. Zikky

Game Technology Study Program, Multimedia Creative Department

Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS Sukolilo Surabaya

Email: zikky@pens.ac.id

Abstract

Shortest pathfinding problem has become a populer issue in Game’s

Artificial Intelligent (AI). This paper discussed the effective way to

optimize the shortest pathfinding problem, namely Navigation Mesh

(NavMesh). This method is very interesting because it has a large area

of implementation, especially in games world. In this paper, NavMesh

was implemented by using A* (A star) algorithm and examined in

Unity 3D game engine. A* was an effective algorithm in shortest

pathfinding problem because its optimization was made with effective

tracing using segmentation line. Pac-Man game was chosen as the

example of the shortest pathfinding by using NavMesh in Unity 3D. A*

algorithm was implemented on the enemies of Pac-Man (three ghosts),

which path was designed by using NavMesh concept. Thus, the

movement of ghosts in catching Pac-Man was the result of this review

of the effectiveness of this concept. In further research, this method

could be implemented on several optimization programmes, such as

Geographic Information System (GIS), robotics, and statistics.

Keywords: NavMesh, Pac Man, shortest pathfinding, A*

1. INTRODUCTION

Pac-Man has become a legendary video game over 1980s. The most

interesting case in Pac-man is the intelligent behavior of three ghosts (Pac-

Man's enemies). They walk and catch Pac-Man wherever he goes. Three

ghosts are the agents or NPC on which Artificial Intelligence (AI) algorithm is

embedded. Previously, most of the algorithm used on AI is Dijkstra [1].

Shortest pathfinding is a determining process of several objects'

movement to another position without collision [2]. Actually, this method is

not only used in AI game, but also used in other fields, such as Geographic

Information System (GIS), robotics, and statistics, among others. Several

theories have been delivered to solve the pathfinding problem, such as Finite

State Machine (FSM), Graph, Dijkstra, and A*. FSM is the simplest algorithm

which can be implemented in this pathfinding problem but its connection is

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

142

large and the movement is easy to be predicted. Other algorithm which can

be implemented in pathfinding problem is Graph. Graph makes several

waypoints depending on the weight of graph value. Other than Graph there is

Dijkstra algorithm. It uses greedy principle. Greedy principle on Dijkstra

algorithm shows that on each step, we choose the side which has minimum

weight and put it into a set of solutions [2].

Today’s industrial development requires optimal shortest pathfinding

algorithm in solving the problem because their resources have developed

very complex. To solve the problems in pathfinding algorithm, game

industries have made several research and removed several parts which are

not used. Finally, they find the solution namely Navigation Mesh (NavMesh).

But, NavMesh can only select a reasonable path for each moving object.

Navigation mesh is a technique to represent a game world using polygons.

Due to its simplicity and high efficiency in representing the 3D environment,

navigation mesh has become a mainstream choice for 3D games [2]. For its

implementation, this paper examined NavMesh concept in Unity 3D game

engine.

2. RELATED WORKS

To support the basic theory about ghost navigation (NPC in Pac-man),

several concepts (research) about basic navigation mesh (NavMesh) and its

features on unity 3D are discussed as follows.

2.1 Navigation Mesh

Navigation mesh has become a popular concept which is used in

shortest pathfinding problem of 3D games because 3D environment mostly

uses polygon structure. In Navigation Mesh, the properties of polygon object

or terrain can guarantee a free-walk for a game character as long as the

character which stays in the same polygon is a set of complex polygon [2].

Figure 2.1. Pathfinding with waypoint graph and navigation mesh [3]

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

143

As shown in Figure 2.1, there are differences between shortest

pathfinding problems which use waypoint Graph and Navigation Mesh.

Figure 2.1 (a) shows how graph algorithm takes a path in movement from

start to goal. Graph chooses the nearest point based on the weight value

which is established. There is no optimization after the process. But, if we

compare it with NavMesh concept in Figure 2.1(b), the character moves from

the start point to the destination/goal in a straight line. In this case, the start

point is not in the same polygon as that of the goal point. The character needs

to determine to which polygon it will then go. It repeats this step until both

the character and the goal are located in the same polygon. Finally, the

character can move to the destination in a straight line [2].

 Pathfinding process in navigation mesh can be implemented with

several algorithms, but the most effective and popular today’s algorithm

which is implemented for shortest pathfinding problem is A* (A Star)

algorithm. A* is a generic search algorithm that can be used to find solutions

for many problems, and pathfinding is one of them. For pathfinding, A*

algorithm repeatedly examines the most promising unexplored location it

has seen. When the location explored is the goal, the algorithm is finished.

Otherwise, it has noted all location around for further exploration. A* is

probably the most popular pathfinding algorithm in today’s AI (Artificial

Intelligence) game(s) [3].

Figure 2.2. Example of NavMesh construction [3]

Figure 2.2 is the example of NavMesh implementation using P symbol as

walkable area and B as blocked area/obstacle. In this mesh navigation,

polygons with C symbols are chosen for navigation way of start point (Ps

polygon) towards the goal point (Pg polygon); while in the navigation

mapping, NavMesh needs optimum algorithm to reach the goal. First, A*

algorithm chooses the shortest path by making connections among walkable

polygons. Therefore, A* is able to detect the walkable polygons from the start

point to the goal. Generally, A* chooses one point in every walkable polygon

and then connects them until the start and the goal points make one

connected line.

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

144

Figure 2.3. Navmesh graph and the shortest path

Figure 2.3 shows that the yellow graph is the path point connection

which can be passed by available NavMesh; while the blue line is the shortest

path which is determined by A* algorithm. In this process, A* shortest

pathfinding problem has not been optimized because every walkable polygon

point still has weaknesses, for example the polygon with a wide area. There

are several solutions of shortest pathfinding which are delivered by A*

algorithm, it uses centroid point, edge midpoint, or obstacle point as shown

in Figure 2.4.

(a)

(b)

(c)

Figure 2.4. Several standard pathfinding using A*; (a) pathfinding with connecting

polygon centroid, (b) pathfinding with connecting edge midpoint, and (c)

pathfinding with connecting obstacle corner [3]

To optimize Figure 2.4 problem, Xiao Cui and Hao Shi [1] made the

solution with Triangulation concept. This concept is also used in unity 3D

optimization. In triangulation optimization, the polygons are replaced with

triangles.

(a) (b) (c)

Figure 2.5. Pathfinding steps (a � c) using tringulation Optimation [3]

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

145

The triangulation optimization as shown in Figure 2.5 is made by using

the minimum angle of a triangle which must be maximized. In this picture,

the optimization is made by using effective tracing with segmentation line. S

point symbol is the start and g point symbol is the goal. Pathfinding passes

the start point to the goal point. In this case, firstly, s goes through v1 and v2

respectively. Then, on the next step, v1 goes through v3 (v3 is recognized as

the shortest path which is close to the goal point). After that, Figure 2.5 (b)

shows that tracing line is updated from s to v3 straightly because v3 has

already established a point in the first post segmentation, then the path line

from v1 to v3 is removed, and v3 must decide the next point that is traced as

the start point in the previous segmentation (See figure 2.5 (c)). Finally, it

continues until it reaches the goal point. The optimum path does not cross

any triangle more than once.

2.2 Navigation System in Unity 3D

Unity is a cross-platform game engine which is developed and founded

by Unity Technologies in 2005. Unity has released several versions, one of

which is the newest version, namely 5.2.2 which has new feature called

NavMesh path library.

Figure 2.6 Navigation Mesh System Components [4]

As shown in Figure 2.6, there are some components which implement

NavMesh system in Unity, such as: NavMesh, NavMesh Obstacle, Navmesh

Agent, and OffMeshLink. NavMesh is a polygon structure which describes the

walkable surfaces of the game world and allows us to find path from one

walkable location to another one in the game world; NavMesh Agent is a

component which can move towards the goal on NavMesh surface, so the

agent can avoid the obstacle; NavMesh Obstacle is an object which should be

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

146

avoided by the agent’s movement; and OffMeshLink is a connection point

which allows us to incorporate navigation shortcuts which cannot be

represented when using a walkable surface.

3. SYSTEM DESIGN

In the system design process, we designed the area of PacMan Game,

then determined the obstacle, and created the actors including player,

agent/NPC, and bonus actors.

Figure 3.1. Flow diagram of NavMesh implementation on Pac Man Game using Unity

3D

As shown in Figure 3.1, there were five steps to examine the movement

of agent on navigation mesh. Game arena was made in unity using a terrain.

We created the obstacle by using object as the wall. Then, we determined the

path of NavMesh surfaces and the outside area which were unwalkable by

the actors, and then, we created and determined the actor (red color) as the

pac-man, the white ball as the ghosts (pac-man’s enemies), and the orange

box as the bonus point. After that, we put the ghosts randomly in the arena

and we connected to the actor with NavMesh A* as a pathfinding agent. If one

of the ghosts collided with the actor, the health point of the actor would be

decreasing. But if the health point became 0 (zero), the game was over.

4. RESULTS

A. Dijkstra and A* concept in shortest pathfinding

To ensure the effectivity of A* implementation, the comparison

between Dijkstra and A* algorithm for searching the pathfinding was shown

in the Figure 4.1. Figure 4.1 showed how dijkstra algorithm worked to find

the goal. In this picture, the searching process was reached with radial search

segmentation. The start agent caught the goal by detecting paths arround it

until the goal agent entered the inside of the radial search area. Thus, the

agent took the path towards the goal. This method was different from A*

algorithm as shown in Figure 4.2.

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

147

 (a) Start (b) Search process (c) Find the goal

Figure 4.1. Dijkstra pathfinding processing

 (a) Start (b) Search process (c) Find the goal

Figure 4.2. A* pathfinding processing

Figure 4.2 showed how the start agent searched and caught the goal. The

agent just tried in one radial layer around it, then pointed the best direction

to the nearest point of the goal until it caught the goal. So, if it was compared

to Dijkstra pathfinding concept, A* had more efficient way and its

pathfinding’s time was shorter than Dijkstra pathfinding.

B. Dijkstra and A* concept in shortest pathfinding with wall obstacle

Here, it was examined how Dijkstra algorithm and A* Algorithm worked

in shortest pathfinding problem with the obstacle. Figure 4.3 showed the

differences between Dijkstra and A* method in the shortest pathfinding.

Figure 4.3 showed how the agent caught the goal by using Dijkstra algorithm,

while A* algorithm caught the goal by using wall obstacle. The colors of

pattern which existed around the start agent showed how the agent detected

the goal. Figure 4.3 (a) showed that the discovery area was larger than what

was shown on Figure 4.3 (b) which was very simple and effective.

Figure 4.3. Shortes pathfinding concept with obstacle

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

148

C. A* implementation in Pacman Game using Unity 3D

By placing several ghost agents randomly, we could detect the behavior

resulted by navigation mesh step by using A* algorithm implemented to the

character. To know how this method ran effectively, we captured several

experiments as follows:

1. Placing the actor in the center between two obstacles/walls.

The result was that the enemy ran towards the player straightly. Detailed

result was shown in Figure 4.4.

Figure 4.4. The movement of the enemy, it walked straightly towards the Actor (Red

ball)

2. Placing the actor near the border of the arena and letting one of the enemies

stayed beside another wall.

The result was that the enemy walked to the actor through the obstacle

edge, meaning that it took shorter path rather than enemy's way to the

actor.

Figure 4.4. The movement of enemy, it walked through the obstacle edge towards

the Actor (Red ball)

6. CONCLUSION

It is concluded that Navigation Mesh (NavMesh) and A* algorithm had

become the best solution in solving the shortest pathfinding problem for

today's industrial need.

Volume 4, No. 1, June 2016

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168

149

The comparison between dijkstra and A* shortest pathfinding problem

was different in the concept of pathfinding’s area. Dijkstra detected the goal

by radial detection mode, while A* used one radial’s layer around it, and then

pointed the best direction to the nearest point of the goal. It repeated until it

caught the goal.

As comparison on Figure 4.1, 4.2, and 4.3 experiment, navigation mesh

with A* algorithm was the more effective pathfingding than Djikstra

algorithm. The data of comparison was shown in Table 1.

Table 1. NavMesh with A* algoritm and Djikstra Algoritm comparation

Experiment Name of Algoritm Steps to catch the goal

Figure 4.1 A* algoritm 43 steps

Figure 4.2 Djikstra 348 steps

Figure 4.3
A* algoritm 33 steps

Djikstra 111 steps

The implementation of navigation mesh (NavMesh) process in 3D

polygon surfaces was the key of effective mapping search. By using this

method, the agent did not need to explore the unwalkable area. Therefore,

updating path with straight line and minimizing the corner point in

connecting start towards the goal using A* algorithm had become the best

way and the core of effectiveness in A* optimization.

REFERENCES

[1] Mahardiansyah Kartika, Dijkstra’s Algorithm Application on the Pac-

Man Game, Makalah IF2091 Struktur Diskrit Program Studi Teknik

Informatika STEI ITB Bandung, 2010-2011.

[2] Xiao Cui and Hao Shi, An Overview of Pathfinding in Navigation Mesh,

IJCSNS International Journal of Computer Science and Network Security,

48 VOL.12 No.12, 2012.

[3] Xiao Cui and Hao Shi, A*-based Pathfinding in Modern Computer

Games, IJCSNS International Journal of Computer Science and Network

Security, 48 VOL.11 No.12, 2011.

[4] Official Website of 3D Game Engine http://unity3d.com, accesed on

October 2015.

[5] Shortest Pathfinding, http://qiao.github.io/PathFinding.js/visual/,

accesed on November 2015.

